• Title/Summary/Keyword: Spectral range

Search Result 957, Processing Time 0.032 seconds

Transferring Calibrations Between on Farm Whole Grain NIR Analysers

  • Clancy, Phillip J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1210-1210
    • /
    • 2001
  • On farm analysis of protein, moisture and oil in cereals and oil seeds is quickly being adopted by Australian farmers. The benefits of being able to measure protein and oil in grains and oil seeds are several : $\square$ Optimize crop payments $\square$ Monitor effects of fertilization $\square$ Blend on farm to meet market requirements $\square$ Off farm marketing - sell crop with load by load analysis However farmers are not NIR spectroscopists and the process of calibrating instruments has to the duty of the supplier. With the potential number of On Farm analyser being in the thousands, then the task of calibrating each instrument would be impossible, let alone the problems encountered with updating calibrations from season to season. As such, NIR technology Australia has developed a mechanism for \ulcorner\ulcorner\ulcorner their range of Cropscan 2000G NIR analysers so that a single calibration can be transferred from the master instrument to every slave instrument. Whole grain analysis has been developed over the last 10 years using Near Infrared Transmission through a sample of grain with a pathlength varying from 5-30mm. A continuous spectrum from 800-1100nm is the optimal wavelength coverage fro these applications and a grating based spectrophotometer has proven to provide the best means of producing this spectrum. The most important aspect of standardizing NIB instruments is to duplicate the spectral information. The task is to align spectrum from the slave instruments to the master instrument in terms of wavelength positioning and then to adjust the spectral response at each wavelength in order that the slave instruments mimic the master instrument. The Cropscan 2000G and 2000B Whole Grain Analyser use flat field spectrographs to produce a spectrum from 720-1100nm and a silicon photodiode array detector to collect the spectrum at approximately 10nm intervals. The concave holographic gratings used in the flat field spectrographs are produced by a process of photo lithography. As such each grating is an exact replica of the original. To align wavelengths in these instruments, NIR wheat sample scanned on the master and the slave instruments provides three check points in the spectrum to make a more exact alignment. Once the wavelengths are matched then many samples of wheat, approximately 10, exhibiting absorbances from 2 to 4.5 Abu, are scanned on the master and then on each slave. Using a simple linear regression technique, a slope and bias adjustment is made for each pixel of the detector. This process corrects the spectral response at each wavelength so that the slave instruments produce the same spectra as the master instrument. It is important to use as broad a range of absorbances in the samples so that a good slope and bias estimate can be calculated. These Slope and Bias (S'||'&'||'B) factors are then downloaded into the slave instruments. Calibrations developed on the master instrument can then be downloaded onto the slave instruments and perform similarly to the master instrument. The data shown in this paper illustrates the process of calculating these S'||'&'||'B factors and the transfer of calibrations for wheat, barley and sorghum between several instruments.

  • PDF

Red Tide Detection through Image Fusion of GOCI and Landsat OLI (GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지)

  • Shin, Jisun;Kim, Keunyong;Min, Jee-Eun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.377-391
    • /
    • 2018
  • In order to efficiently monitor red tide over a wide range, the need for red tide detection using remote sensing is increasing. However, the previous studies focus on the development of red tide detection algorithm for ocean colour sensor. In this study, we propose the use of multi-sensor to improve the inaccuracy for red tide detection and remote sensing data in coastal areas with high turbidity, which are pointed out as limitations of satellite-based red tide monitoring. The study area were selected based on the red tide information provided by National Institute of Fisheries Science, and spatial fusion and spectral-based fusion were attempted using GOCI image as ocean colour sensor and Landsat OLI image as terrestrial sensor. Through spatial fusion of the two images, both the red tide of the coastal area and the outer sea areas, where the quality of Landsat OLI image was low, which were impossible to observe in GOCI images, showed improved detection results. As a result of spectral-based fusion performed by feature-level and rawdata-level, there was no significant difference in red tide distribution patterns derived from the two methods. However, in the feature-level method, the red tide area tends to overestimated as spatial resolution of the image low. As a result of pixel segmentation by linear spectral unmixing method, the difference in the red tide area was found to increase as the number of pixels with low red tide ratio increased. For rawdata-level, Gram-Schmidt sharpening method estimated a somewhat larger area than PC spectral sharpening method, but no significant difference was observed. In this study, it is shown that coastal red tide with high turbidity as well as outer sea areas can be detected through spatial fusion of ocean colour and terrestrial sensor. Also, by presenting various spectral-based fusion methods, more accurate red tide area estimation method is suggested. It is expected that this result will provide more precise detection of red tide around the Korean peninsula and accurate red tide area information needed to determine countermeasure to effectively control red tide.

Characterization of Optical Properties of Long-range Transported Asian Dust in NorthEast Asia (동북아시아 지역에서 황사의 중장거리 이동에 따른 광학적 특성 변화 분석)

  • Noh, Youngmin;Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.243-251
    • /
    • 2013
  • The optical properties of long-range transported Asian dust were studied by the satellite observations and Sun/sky radiometer measurements from the Aerosol Robotic Network(AERONET) in Northeast Asia. The movement of Asian dust from source regions to downwind areas was tracked by the Ozone Monitoring Instrument(OMI) derived aerosol product imagery. The optical properties of Asian dust were classified for geographical locations, which are source regions such as deserts area in Dunhuang and Inner Mongolia, downwind areas such as Yulin and Beijing, and long-range transported regions such as Korea(Anmyon and Gosan) and Japan(Noto). In general, relatively higher aerosol mass loadings with larger aerosol particles at desert regions were found. Aerosol Optical Depth(AOD) decreased significantly in downwind areas and long-range transported areas, which was accompanied by increased Angstrom exponents. This indicates the effects of aerosol mixing with various pollutants during transport of Asian dust plume on aerosol optical properties. Moreover, relatively high Single-Scattering Albedo(SSA) at 440 nm values ranging from 0.90 - 0.96 and increasing tendency of SSA with wavelength were observed at source region. The spectral dependence of SSA decreased during long-range transport.

Determination of human breast cancer cells viability by near infrared spectroscopy

  • Isoda, Hiroko;Emura, Koji;Tsenkova, Roumiana;Maekawa, Takaaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4105-4105
    • /
    • 2001
  • Near infrared spectroscopy (NIRS) was employed to qualify and quantify on survival, the injury rate and apoptosis of the human breast cancer cell line MCF-7 cells. MCF-7 cells were cultured in RPMI medium supplemented with 10% FCS in a 95% air and 5% CO2 atmosphere at 37$^{\circ}C$. For the viable cells preparation, cells were de-touched by 0.1% of trypsin treatment and washed with RPMI supplemented with 10% FCS medium by centrifugation at 1000 rpm for 3min. For the dead cells preparation, cells were de-touched by a cell scraper. The cells were counted by a hemacytometer, and the viability was estimated by the exclusion method with frypan blue dye. Each viable and dead cells were suspended in PBS (phosphate bufferred saline) or milk at the cell density desired. For the quantitative determination of cell death by measuring the LDH (lactate dehydrogenase) activity liberated from cells with cell membrane injuries, LDH-Cytotoxic Test Wako (Wako, Pure Pharmaceutical Co. Ltd., Japan) was used. We found that NIRS measurement of MCF-7 cells at the density range could evaluate and monitor the different characteristics of living cells and dead cells. The spectral analysis was performed in two wavelength ranges and with 1,4, 10 mm pathlength. Different spectral data pretreatment and chemometrics methods were used. We applied SIMCA classificator on spectral data of living and dead cells and obtained good accuracy when identifying each class. Bigger variation in the spectra of living cells with different concentrations was observed when compared to the same concentrations of dead cells. PLS was used to measure the number of cells in PBS. The best model for measurement of dead cells, as well as living cells, was developed when raw spectra in the 600-1098 nm region and 4 mm pathlength were used. Smoothing and second derivative spectral data pretreatment gave worst results. The analysis of PLS loading explained this result with the scatter effect found in the raw spectra and increased with the number of cells. Calibration for cell count in the 1100-2500 nm region showed to be very inaccurate.

  • PDF

Atmospheric correction by Spectral Shape Matching Method (SSMM): Accounting for horizontal inhomogeneity of the atmosphere

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.341-343
    • /
    • 2006
  • The current spectral shape matching method (SSMM), developed by Ahn and Shanmugam (2004), relies on the assumption that the path radiance resulting from scattered photons due to air molecules and aerosols and possibly direct-reflected light from the air-sea interface is spatially homogeneous over the sub-scene of interest, enabling the retrieval of water-leaving radiances ($L_w$) from the satellite ocean color image data. This assumption remains valid for the clear atmospheric conditions, but when the distribution of aerosol loadings varies dramatically the above postulation of spatial homogeneity will be violated. In this study, we present the second version of SSMM which will take into account the horizontal variations of aerosol loading in the correction of atmospheric effects in SeaWiFS ocean color image data. The new version includes models for the correction of the effects of aerosols and Raleigh particles and a method fur computation of diffuse transmittance ($t_{os}$) as similar to SeaWiFS. We tested this method over the different optical environments and compared its effectiveness with the results of standard atmospheric correction (SAC) algorithm (Gordon and Wang, 1994) and those from in-situ observations. Findings revealed that the SAC algorithm appeared to distort the spectral shape of water-leaving radiance spectra in suspended sediments (SS) and algal bloom dominated-areas and frequently yielded underestimated or often negative values in the lower green and blue part of the electromagnetic spectrum. Retrieval of water-leaving radiances in coastal waters with very high sediments, for instance = > 8g $m^{-3}$, was not possible with the SAC algorithm. As the current SAC algorithm does not include models for the Asian aerosols, the water-leaving radiances over the aerosol-dominated areas could not be retrieved from the image and large errors often resulted from an inappropriate extrapolation of the estimated aerosol radiance from two IR bands to visible spectrum. In contrast to the above results, the new SSMM enabled accurate retrieval of water-leaving radiances in a various range of turbid waters with SS concentrations from 1 to 100 g $m^{-3}$ that closely matched with those from the in-situ observations. Regardless of the spectral band, the RMS error deviation was minimum of 0.003 and maximum of 0.46, in contrast with those of 0.26 and 0.81, respectively, for SAC algorithm. The new SSMM also remove all aerosol effects excluding areas for which the signal-to-noise ratio is much lower than the water signal.

  • PDF

A Power Control-Based MF-TDMA Resource Allocation Scheme for Next Generation Military Satellite Communication Systems (차기 군 위성통신망 체계에서 이기종 단말 운용을 고려한 전력제어 기반 MF-TDMA 자원할당 기법)

  • Woo, Soon;Park, Hyung-Won;Lee, Ho-Sub;Yoo, Youn-Sang;Jung, Byung-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1138-1147
    • /
    • 2012
  • In this paper, an efficient power control based MF-TDMA resource allocation scheme is proposed for next generation military satellite communication systems. The proposed scheme has the flexibility is used to support heterogeneous terminals with differ in transmission capabilities. The method can be divided into two parts : burst size calculation and burst structure determination. At first, we estimate the link budget taken into account a dynamic satellite link state variation. Then, applicable ACM level and burst size is chosen. In burst structure determination phase, we reorganize the burst structure in time-frequency domain by controlling limited power, bandwidth, time resources. In particular, we compensate the power spectral density among different terminals to integrate them in same transponder, Furthermore, we increase the packing efficiency by controlling the ACM level of the burst in applicable power spectral density range. Simulation results show that the method increase the spectral efficiency and burst packing efficiency. In addition, slot allocation rejection ratio is successfully reduced.

Analysis on Spectral Regrowth of Bandwidth Expansion Module by Quadrature Modulation Error in Digital Chirp Generator (디지털 첩 발생기에서의 직교 변조 오차에 의한 대역 확장 모듈에서의 스펙트럴 재성장 분석)

  • Kim, Se-Young;Sung, Jin-Bong;Lee, Jong-Hwan;Yi, Dong-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.761-768
    • /
    • 2010
  • This paper presents an effective method to achieve the wideband waveform for high resolution SAR(Synthetic Aperture Radar) using the frequency multiplication technique. And also this paper analyzes the root causes for the spectral regrowth due to 3rd-order intermodulation in chirp bandwidth expansion scheme using quadrature modulator and frequency multipliers. The amplitude and phase imbalance requirement are defined based on the simulation results in terms of quadrature channel imbalance. This minimizes the degradation of range resolution, peak sidelobe ratio and integrated sidelobe ratio. The wideband chirp generator using the frequency multiplier and memory map scheme was manufactured and the compensation technique was presented to reduce the spectral regrowth of SAR waveform by minimizing the amplitude and phase imbalance. After I and Q channel imbalance adjustment, the carrier level reduces -28.7 dBm to -53.4 dBm. Chirp signal with 150 MHz bandwidth at S-band expands to 600 MHz bandwidth at X-band. The sidelobe levels are reduced by about 8 to 9 dB by compensating the amplitude balance between I and Q channels.

Vicarious Radiometric Calibration of the Ground-based Hyperspectral Camera Image (지상 초분광카메라 영상의 복사보정)

  • Shin, Jung-Il;Maghsoudi, Yasser;Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.213-222
    • /
    • 2008
  • Although hyperspectral sensing data have shown great potential to derive various surface information that is not usually available from conventional multispectral image, the acquisition of proper hyperspectral image data are often limited. To use ground-based hyperspectral camera image for remote sensing studies, radiometric calibration should be prerequisite. The objective of this study is to develop radiometric calibration procedure to convert image digital number (DN) value to surface reflectance for the 120 bands ground-based hyperspectral camera. Hyperspectral image and spectral measurements were simultaneously obtained from the experimental target that includes 22 different surface materials of diverse spectral characteristics at wavelength range between 400 to 900 nm. Calibration coefficients to convert image DN value to at-sensor radiance were initially derived from the regression equations between the sample image and spectral measurements using ASD spectroradiometer. Assuming that there is no atmospheric effects when the image acquisition and spectral measurements were made at very close distance in ground, we were also able to derive calibration coefficients that directly transform DN value to surface reflectance. However, these coefficients for deriving reflectance values should not be applied when the camera is used for aerial image that contains significant effect from atmosphere and further atmospheric correction procedure is required in such case.

Analysis of Spectral Reflectance Characteristics Using Hyperspectral Sensor at Diverse Phenological Stages of Soybeans

  • Go, Seung-Hwan;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.699-717
    • /
    • 2021
  • South Korea is pushing for the advancement of crop production technology to achieve food self-sufficiency and meet the demand for safe food. A medium-sized satellite for agriculture is being launched in 2023 with the aim of collecting and providing information on agriculture, not only in Korea but also in neighboring countries. The satellite is to be equipped with various sensors, though reference data for ground information are lacking. Hyperspectral remote sensing combined with 1st derivative is an efficient tool for the identification of agricultural crops. In our study, we develop a system for hyperspectral analysis of the ground-based reflectance spectrum, which is monitored seven times during the cultivation period of three soybean crops using a PSR-2500 hyperspectral sensor. In the reflection spectrum of soybean canopy, wavelength variations correspond with stages of soybean growths. The spectral reflection characteristics of soybeans can be divided according to growth into the vegetative (V)stage and the reproductive (R)stage. As a result of the first derivative analysis of the spectral reflection characteristics, it is possible to identify the characteristics of each wavelength band. Using our developed monitoring system, we observed that the near-infrared (NIR) variation was largest during the vegetative (V1-V3) stage, followed by a similar variation pattern in the order of red-edge and visible. In the reproductive stage (R1-R8), the effect of the shape and color of the soybean leaf was reflected, and the pattern is different from that in the vegetative (V) stage. At the R1 to R6 stages, the variation in NIR was the largest, and red-edge and green showed similar variation patterns, but red showed little change. In particular, the reflectance characteristics of the R1 stage provides information that could help us distinguish between the three varieties of soybean that were studied. In the R7-R8 stage, close to the harvest period, the red-edge and NIR variation patterns and the visible variation patterns changed. These results are interpreted as a result of the large effects of pigments such as chlorophyll for each of the three soybean varieties, as well as from the formation and color of the leaf and stem. The results obtained in this study provide useful information that helps us to determine the wavelength width and range of the optimal band for monitoring and acquiring vegetation information on crops using satellites and unmanned aerial vehicles (UAVs)

Investigation of the Effects of Wavelength Range and Absorption Cross-Section on Sulfur Dioxide Slant Column Density Retrieval Using Ground-Based UV Scattered Sunlight Measurement (지상 기반 태양 UV 산란광 관측을 이용한 이산화황 경사칼럼농도 산출 시 파장 구간 및 흡수단면적에 따른 영향 조사)

  • Gyeong Park;Buju Gong;Minji Kim;Hanlim Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.377-385
    • /
    • 2024
  • We investigated the effect of spectral fitting wavelength interval variations and selection of absorption cross-section on the sulfur dioxide slant column density (SCD) retrievals from the scattered sunlight observation using a UV-Vis hyperspectral instrument. The sulfur dioxide slant column densities were retrieved from the combinations of multiple spectral fitting intervals and absorption cross-sections. The observation was carried out at the site 0.53 km away from a combustion site located in Gimhae from December 1, 2023, to January 23, 2024. The radiances were obtained on the line of measurement sight toward the stack of the combustion facility. The best spectral fitting intervals were found to be from 305.7 to 321.1 nm. In terms of the absorption cross-section dependency, the SO2 (293 K), O3 (223 K, 243 K) show the best spectral fitting for the observed radiances with both the smallest fitting residual and SCD error. The effects of the fitting interval and cross sections found in this study can be useful information for improving SO2 retrievals based on UV hyperspectral measurements.