DOI QR코드

DOI QR Code

Vicarious Radiometric Calibration of the Ground-based Hyperspectral Camera Image

지상 초분광카메라 영상의 복사보정

  • Shin, Jung-Il (Department of Geoinformatic Engineering, Inha University) ;
  • Maghsoudi, Yasser (Department of Geoinformatic Engineering, Inha University) ;
  • Kim, Sun-Hwa (Department of Geoinformatic Engineering, Inha University) ;
  • Kang, Sung-Jin (Department of Geoinformatic Engineering, Inha University) ;
  • Lee, Kyu-Sung (Department of Geoinformatic Engineering, Inha University)
  • 신정일 (인하대학교 지리정보공학과) ;
  • ;
  • 김선화 (인하대학교 지리정보공학과) ;
  • 강성진 (인하대학교 지리정보공학과) ;
  • 이규성 (인하대학교 지리정보공학과)
  • Published : 2008.04.30

Abstract

Although hyperspectral sensing data have shown great potential to derive various surface information that is not usually available from conventional multispectral image, the acquisition of proper hyperspectral image data are often limited. To use ground-based hyperspectral camera image for remote sensing studies, radiometric calibration should be prerequisite. The objective of this study is to develop radiometric calibration procedure to convert image digital number (DN) value to surface reflectance for the 120 bands ground-based hyperspectral camera. Hyperspectral image and spectral measurements were simultaneously obtained from the experimental target that includes 22 different surface materials of diverse spectral characteristics at wavelength range between 400 to 900 nm. Calibration coefficients to convert image DN value to at-sensor radiance were initially derived from the regression equations between the sample image and spectral measurements using ASD spectroradiometer. Assuming that there is no atmospheric effects when the image acquisition and spectral measurements were made at very close distance in ground, we were also able to derive calibration coefficients that directly transform DN value to surface reflectance. However, these coefficients for deriving reflectance values should not be applied when the camera is used for aerial image that contains significant effect from atmosphere and further atmospheric correction procedure is required in such case.

초분광영상의 활용 가능성은 증대하고 있으나, 연구에 필요한 초분광센서의 공급은 비교적 제한되어 있다. 초분광영상으로부터 정보 획득을 위한 처리와 분석은 대부분 영상에서 획득되는 분광반사율에 기반을 두고 있다. 본 연구의 목표는 사전 복사보정 자료가 없는 지상 초분광카메라 영상의 복사보정 과정을 개발하여 영상의 화소값을 분광반사율로 변환하고자 한다. 다양한 분광반사특성을 가진 22개 클래스로 구성된 모의지표물을 대상으로 분광측정기를 이용한 대리 복사보정 절차를 수행하였다 분광측정기로 측정된 복사량과 영상의 화소값의 관계를 이용하여 120개 밴드 초분광영상의 화소값을 센서감지 복사량(radiance)로 변환하는 보정계수를 도출하였다. 영상 촬영 및 분광측정이 대기의 영향이 거의 없는 지상 근접 촬영으로 이루어졌기 때문에, 화소값을 반사율(reflectance)로 직접 변환하는 보정계수도 산출하였다. 그러나 원거리 촬영이나 공중 촬영으로 획득된 영상의 경우 산출된 복사보정 계수는 센서감지 복사량 변환에만 유효하며, 반사율을 얻기 위해서는 추가적인 대기보정 절차가 별도로 수행되어야 한다.

Keywords

References

  1. 김선화, 이규성, 마정림, 국민정. 2005. 초분광 원격탐사의 특성, 처리기법 및 활용 현황, 대한원격탐사학회지, 21(4): 341-369. https://doi.org/10.7780/kjrs.2005.21.4.341
  2. Biggar, S. F., K. J. Thome., and W. Wisniewski, 2003. Vicarious radiometric calibration of EO 1 sensors by reference to high reflectance ground targets, IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1174-1179.
  3. Dinguirard, M. and Slater P. N., 1999. Calibration of space-multispectral imaging sensors: a review, Remote Senisng of Environment, 68(3): 194-205. https://doi.org/10.1016/S0034-4257(98)00111-4
  4. Fitzgerald, G. J., 2004. Portable hyperspectral tunable imaging system (PHyTIS) for precision agriculture, Agronomy Journal, 96(1): 311-315. https://doi.org/10.2134/agronj2004.0311
  5. Goetz, A. F. H., 1991. Imaging spectrometry for studying Earth, Air, Fire and Water. EARSeL Advaces in Remote Sensing, 1, 3-15.
  6. Jensen, J. R., 2005. Introductory digital image processing - A remote sensing perspective, 3rd edition, Prentice hall, 213-215.
  7. Kim, S.-H. S.-J. Kang, J.-H. Chi, and K.-S. Lee, 2007 년 2월. Absolute atmospheric correction procedure for the EO-1 Hyperion data using MODTRAN code, Korean Journal of Remote Sensing, 23(1): 7-14. https://doi.org/10.7780/kjrs.2007.23.1.7
  8. Lee, K.-S., M.-J. Kook, J.-I. Shin, S.-H. Kim, and T.-G. Kim, Spectral Characteristics of Forest Vegetation in Moderate Drought Condition Observed by Laboratory Measurements and Spaceborne, Hyperspectral Data, Photogrammetric Engineering and Remote Sensing, 73(10): 1121-1127.
  9. Ponzoni, F. J., Zullo Junior J., and Lamparelli R. A. C., 2006. In-flight absolute calibration of the CBERS-2 IRMSS sensor data, International Journal of Remote Sensing, 27(4): 799-804. https://doi.org/10.1080/01431160500292544
  10. Secker, J., Staenz K., Gauthier R. P., and Budkewitsch P. B., 2001, Vicarious calibration of airborne hyperpsectral sensors in operational environments, Remote Sensing of Environment, 76(1): 81-92. https://doi.org/10.1016/S0034-4257(00)00194-2
  11. Surface Optics Inc., 2001. Surface Optics webpage hyperspectral imaging system, (http://www.surfaceoptics.com)
  12. Teillet P. M., Gedosejevs G., Gauthier R. P., O'Neill N. T., Thome K. J., Biggar S. F., Ripley H., and Meygret A., 2001. A generalized approach to the vicarious calibration of multiple Earth observation sensors using hyperspectral data, Remote Sensing of Environment, 77(3): 304-327. https://doi.org/10.1016/S0034-4257(01)00211-5