• Title/Summary/Keyword: Spectral parameter

Search Result 311, Processing Time 0.032 seconds

Band structure, electron-phonon interaction and superconductivity of yttrium hypocarbide

  • Dilmi, S.;Saib, S.;Bouarissa, N.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1338-1344
    • /
    • 2018
  • Band parameters and superconductivity of yttrium hypocarbide ($Y_2C$) have been investigated. The computations are performed using first-principles pseudopotential method within a generalized gradient approximation. The equilibrium lattice parameters have been determined and compared with experiment. Moreover, the material of interest is found to be stiffer for strains along the a-axis than those along the c-axis. A band-structure analysis of $Y_2C$ implied that the latter has a metallic character. The examination of Eliashberg Spectral Function indicates that Y-related phonon modes as well as C-related phonon modes are considerably involved in the progress of scattering of electrons. By integrating this function, the value of the average electron-phonon coupling parameter (${\lambda}$) is found to be 0.362 suggesting thus that $Y_2C$ is a weak coupling Bardeen-Copper-Schrieffer superconductor. The use of a reasonable value for the effective Coulomb repulsion parameter (${\mu}^*=0.10$) yielded a superconducting critical temperature $T_c$ of 0.59 K which is comparable with a previous theoretical value of 0.33 K. Upon compression (at pressure of 10 GPa) ${\lambda}$ and $T_c$ are increased to be 0.366 and 0.89 K, respectively, showing thus the pressure effect on the superconductivity in $Y_2C$. The spin-polarization calculations showed that the difference in the total energy between the magnetic and non-magnetic $Y_2C$ is weak.

Assessment of seismic parameters for 6 February 2023 Kahramanmaraş earthquakes

  • Bilal Balun
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.117-128
    • /
    • 2023
  • On February 6, 2023, Türkiye woke up with a strong ground motion felt in a wide geography. As a result of the Kahramanmaraş, Pazarcık and Elbistan earthquakes, which took place 9 hours apart, there was great destruction and loss of life. The 2023 Kahramanmaraş earthquakes occurred on active faults known to pose a high seismic hazard, but their effects were devastating. Seismic code spectra were investigated in Hatay, Adıyaman and Kahramanmaraş where destruction is high. The study mainly focuses on the investigation of ground motion parameters of 6 February Kahramanmaraş earthquakes and the correlation between ground motion parameters. In addition, earthquakes greater than Mw 5.0 that occurred in Türkiye were compared with certain seismic parameters. As in the strong ground motion studies, seismic energy parameters such as Arias intensity, characteristic intensity, cumulative absolute velocity and specific energy density were determined, especially considering the duration content of the earthquake. Based on the study, it was concluded that the structures were overloaded far beyond their normal design levels. This, coupled with significant vertical seismic components, is a contributing factor to the collapse of many buildings in the area. In the evaluation made on Arias intensity, much more energy (approximately ten times) emerged in Kahramanmaraş earthquakes compared to other Türkiye earthquakes. No good correlation was found between moment magnitude and peak ground accelerations, peak ground velocities, Arias intensities and ground motion durations in Türkiye earthquakes. Both high seismic components and long ground motion durations caused intense energy to be transferred to the structures. No strong correlation was found between ground motion durations and other seismic parameters. There is a strong positive correlation between PGA and seismic energy parameter AI. Kahramanmaraş earthquakes revealed that changes should be made in the Turkish seismic code to predict higher spectral acceleration values, especially in earthquake-prone regions in Türkiye.

Open and Short Circuit Switches Fault Detection of Voltage Source Inverter Using Spectrogram

  • Ahmad, N.S.;Abdullah, A.R.;Bahari, N.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.190-199
    • /
    • 2014
  • In the last years, fault problem in power electronics has been more and more investigated both from theoretical and practical point of view. The fault problem can cause equipment failure, data and economical losses. And the analyze system require to ensure fault problem and also rectify failures. The current errors on these faults are applied for identified type of faults. This paper presents technique to detection and identification faults in three-phase voltage source inverter (VSI) by using time-frequency distribution (TFD). TFD capable represent time frequency representation (TFR) in temporal and spectral information. Based on TFR, signal parameters are calculated such as instantaneous average current, instantaneous root mean square current, instantaneous fundamental root mean square current and, instantaneous total current waveform distortion. From on results, the detection of VSI faults could be determined based on characteristic of parameter estimation. And also concluded that the fault detection is capable of identifying the type of inverter fault and can reduce cost maintenance.

Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique (EN-DCPD 방법을 이용한 Alloy 600 재료의 국부부식균열 연구)

  • Lee, Yeon-Ju;Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.93-101
    • /
    • 2013
  • The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.

Analysis of Electromagnetic Wave Scattering From a Perfectly Conducting One Dimensional Fractal Surface Using the Monte-Carlo Moment Method (몬테칼로 모멘트 방법을 이용한 1차원 프랙탈 완전도체 표면에서의 전자파 산란 해석)

  • 최동묵;김채영
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.566-574
    • /
    • 2002
  • In this paper, the scattered field from a perfectly conducting fractal surface by the Monte-Carlo moment method was computed. An one-dimensional fractal surface was generated by using the fractional Brownian motion model. Back scattering coefficients are calculated with different values of the spectral parameter(S$\_$0/), and fractal dimension(D) which determine characteristics of the fractal surface. The number of surface realization for the computed field, the point number, and the width of surface realization are set to be 80, 2048, and 64L, respectively. In order to verify the computed results these results are compared with those of small perturbation methods, which show good agreement between them.

A Study On Male-To-Female Voice Conversion (남녀 음성 변환 기술연구)

  • Choi Jung-Kyu;Kim Jae-Min;Han Min-Su
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.115-118
    • /
    • 2000
  • Voice conversion technology is essential for TTS systems because the construction of speech database takes much effort. In this paper. male-to-female voice conversion technology in Korean LPC TTS system has been studied. In general. the parameters for voice color conversion are categorized into acoustic and prosodic parameters. This paper adopts LSF(Line Spectral Frequency) for acoustic parameter, pitch period and duration for prosodic parameters. In this paper. Pitch period is shortened by the half, duration is shortened by $25\%, and LSFs are shifted linearly for the voice conversion. And the synthesized speech is post-filtered by a bandpass filter. The proposed algorithm is simpler than other algorithms. for example, VQ and Neural Net based methods. And we don't even need to estimate formant information. The MOS(Mean Opinion Socre) test for naturalness shows 2.25 and for female closeness, 3.2. In conclusion, by using the proposed algorithm. male-to-female voice conversion system can be simply implemented with relatively successful results.

  • PDF

Direct observation of delocalized exciton state in Ta2 NiSe5: direct evidence of the excitonic insulator state

  • Lee, Jin-Won;Gang, Chang-Jong;Eom, Man-Jin;Kim, Jun-Seong;Min, Byeong-Il;Yeom, Han-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.125.1-125.1
    • /
    • 2016
  • The excitonic insulator (EI), which is one of fundamental insulators, was theoretically proposed in 1967 but its material realization has not been established well. Only a few materials were proposed as EIs but their experimental evidences were indirect such as the renormalization of band dispersions or an anomaly in electrical resistivity. We conducted scanning tunneling microscopy / spectroscopy measurements and found out that $Ta_2$ $NiSe_5$, which was the most recently proposed as an EI, had a metal-insulator phase transition with the energy gap of 700 meV at 78 K. Moreover, the spatially delocalized excitonic energy level was observed within the energy gap, which could be the direct evidence of the EI ground state. Our theoretical model calculation with the order parameter of 150 meV reproduces the spectral function and the excitonic energy gap very well. In addition, experimental data shows that the band character is inverted at the valence and conduction band edges by the exciton formation, indicating that the mechanism of exciton condensation is similar to the Bardeen-Cooper-Schrieffer (BCS) mechanism of cooper pairs in superconductors.

  • PDF

A Study on Prediction of Surface Temperature and Reduction of Infrared Emission from a Naval Ship by Considering Emissivity of Funnel in the Mid-Latitude Meterological Conditions (중위도 기상조건에서 함정의 연돌 방사율을 고려한 적외선 복사량 예측 및 감소방안 연구)

  • Gil, Tae-Jun;Choi, Jun-Hyuk;Cho, Yong-Jin;Kim, Tae-Kuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.40-47
    • /
    • 2007
  • This study is focused on developing a software that predicts the temperature distribution and infrared Emission from 30 objects considering the solar radiation through the atmosphere. The solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code. Surface temperature information is essential for generating the infrared scene of the object. Predictions of the transient surface temperature and the infrared emission from a naval ship by using the software developed here show fairly good results by representing the typical temperature and emitted radiance distributions expected for the naval ship considered in mid latitude. Emissivity of each material is appeared to be an important parameter for recognizing the target in Infrared band region. The numerical results also show that the low emissivity surface on the heat source can be helpful in reducing the IR image contrast as compared to the background sea.

On the Coexistence among WiMAX-TDD, TD-LTE, and TD-SCDMA

  • Cho, Bong-Youl;Kim, Jin-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.104-116
    • /
    • 2010
  • With several advantages such as flexible downlink-to-uplink(DL-to-UL) ratio and flexible spectrum usage, Time Division Duplexing(TDD) is emerging as an alternate to Frequency Division Duplexing(FDD), especially in wireless broadband systems. We already have at least four different TDD systems in the industry: Time Division-Synchronous Code Division Multiple Access(TD-SCDMA), IEEE 802.16e-TDD, IEEE 802.16m-TDD, and Time Division-Long Term Evolution(TD-LTE). A disadvantage of TDD is that tight coordination such as time synchronization between adjacent operators is required to prevent interference between the adjacent TDD systems. In this paper, we investigate coexistence scenarios among the above four well-known TDD systems and calculate spectral efficiency(SE) loss in each scenario. Our findings are that SE loss can be significant if TDD ratios of the adjacent operators are considerably different. However, as long as the TDD ratios of the adjacent operators are similar, configurations in the systems permit perfect time synchronization between the two heterogeneous TDD systems, and the resulting SE loss is zero or reasonably low. We believe that the above findings and the configurations of the TDD systems recommended tominimize SE loss will be helpful for operators who deploy TDD systems in system parameter determination and cross-operator coordination.

Impedance Characteristics of an Expansion-Resonator Type Pulsation Attenuator(Attenuation on Flow and Pressure Ripple form a Hydraulic Piston Pump) (팽창 공명기형 맥동 감쇠기의 임피던스 특성(유압용 피스톤 펌프의 유량.압력맥동 감쇠))

  • 이상기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.88-95
    • /
    • 2000
  • In this paper, an expansion-resonator type pulsation attenuator is proposed to absorb and attenuate flow an pressure ripple with high frequencies generated from hydraulic control systems. The basic principle of a pulsation attenuator proposed here is applied to propagation, reflection, absorption of pressure waves at the cross section of discontinuity and resonance in the pipeline. It has advantage of the compact size and high degree fo freedom for installation in hydraulic systems. The design scheme based on distributed parameter pipeline system with dissipative viscous compressible model is developed. To investigate the reduction of flow and pressure ripple with high frequencies produced by swash plate type axial piston pump, two kinds of attenuators are manufactured. It is experimently confirmed that the spectral intensity of flow and pressure ripple with high frequencies from the pump are reduced up to about 20$^{\circ}$~30dB by using attenuators proposed here. The calculated results were in good agreement with the measured values. From there sults of this study, it is shown that an expansion-resonator type pulsation attenuator is effective in a wide frequency ranges to attenuate the flow and pressure ripple from hydraulic components.

  • PDF