Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.015

Band structure, electron-phonon interaction and superconductivity of yttrium hypocarbide  

Dilmi, S. (Laboratory of Materials Physics and Its Applications, University of M'sila)
Saib, S. (Laboratory of Materials Physics and Its Applications, University of M'sila)
Bouarissa, N. (Laboratory of Materials Physics and Its Applications, University of M'sila)
Abstract
Band parameters and superconductivity of yttrium hypocarbide ($Y_2C$) have been investigated. The computations are performed using first-principles pseudopotential method within a generalized gradient approximation. The equilibrium lattice parameters have been determined and compared with experiment. Moreover, the material of interest is found to be stiffer for strains along the a-axis than those along the c-axis. A band-structure analysis of $Y_2C$ implied that the latter has a metallic character. The examination of Eliashberg Spectral Function indicates that Y-related phonon modes as well as C-related phonon modes are considerably involved in the progress of scattering of electrons. By integrating this function, the value of the average electron-phonon coupling parameter (${\lambda}$) is found to be 0.362 suggesting thus that $Y_2C$ is a weak coupling Bardeen-Copper-Schrieffer superconductor. The use of a reasonable value for the effective Coulomb repulsion parameter (${\mu}^*=0.10$) yielded a superconducting critical temperature $T_c$ of 0.59 K which is comparable with a previous theoretical value of 0.33 K. Upon compression (at pressure of 10 GPa) ${\lambda}$ and $T_c$ are increased to be 0.366 and 0.89 K, respectively, showing thus the pressure effect on the superconductivity in $Y_2C$. The spin-polarization calculations showed that the difference in the total energy between the magnetic and non-magnetic $Y_2C$ is weak.
Keywords
$Y_2C$; Ab initio calculations; Structural properties; Electronic structure; Phonons; Superconductors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. He, J. Alloys Compd. 654 (2016) 180.   DOI
2 M.I. Aroyo, J.M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Bilbao crystallographic server I: databases and crystallographic computing programs, Z. Kristallogr. 221 (2006) 15.
3 N. Bouarissa, Mater. Chem. Phys. 73 (2002) 51.   DOI
4 G.J. Ackland, Rep. Prog. Phys. 64 (2001) 483.   DOI
5 N. Bouarissa, Phys. Status Solidi B 231 (2002) 391.   DOI
6 A. Mujica, A. Rubio, A. Munoz, R.J. Needs, Rev. Mod. Phys. 75 (2003) 863.   DOI
7 S. Saib, N. Bouarissa, Phys. Status Solidi B 244 (2007) 1063.   DOI
8 S. Saib, N. Bouarissa, P. Rodriguez-Hernandez, A. Munoz, J. Appl. Phys.104(2008) 076107.   DOI
9 J.P. Maehlen, V.A. Yartys, B.C. Hauback, J. Alloys Compd. 351 (2003) 151.   DOI
10 X. Zhang, Z.W. Xiao, H.C. Lei, Y. Toda, S. Matsuishi, T. Kamiya, S. Ueda, H. Hosono, Chem. Mater. 26 (2014) 6638.   DOI
11 T. Inoshita, S. Jeong, N. Hamada, H. Hosono, Phys. Rev. X 4 (2014) 031023.
12 J.L. Dye, Electrons as anions, Science 301 (2003) 607.   DOI
13 J.L. Dye, Electrides: early examples of quantum confinement, Acc. Chem. Res. 42 (2009) 1564.   DOI
14 M. Atoji, M. Kikuchi, J. Chem. Phys. 51 (1969) 3863.   DOI
15 S. Otani, K. Hirata, Y. Adachi, N. Ohashi, J. Cryst. Growth 454 (2016) 15.   DOI
16 N. Bouarissa, Physica B 406 (2011) 2583.   DOI
17 J. Park, K. Lee, S.Y. Lee, C.N. Nandadasa, S. Kim, K.H. Lee, Y.H. Lee, H. Hosono, S.-G. Kim, S.W. Kim, J. Am. Chem. Soc. 139 (2017) 615.   DOI
18 J. Park, J.-Y. Hwang, K.H. Lee, S.-G. Kim, K. Lee, S.W. Kim, J. Am. Chem. Soc. 139 (2017) 17277 http://www.sciencedirect.com/science/article/pii/S0022024816304614-!.   DOI
19 S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73 (2001) 515 http://www.pwscf.org.   DOI
20 S. Saib, N. Bouarissa, P. Rodriguez-Hernandez, A. Munoz, J. Appl. Phys. 103 (2008) 013506   DOI
21 P.Y. Yu, M. Cardona, Vibrational Properties of Semiconductors, and Electronphonon Interactions, in: Fundamentals of Semiconductors, Graduate Texts in Physics, Springer, Berlin, Heidelberg, 1996.
22 N. Bouarissa, S. Saib, J. Appl. Phys. 108 (2010) 113710.   DOI
23 S. Saib, N. Bouarissa, P. Rodriguez-Hernandez, A. Munoz, Opt. Mater. 35 (2013) 2303.   DOI
24 J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.   DOI
25 R. Stumpf, X. Gonge, M. Scheffler, A List of Separable,Norm-conserving, Ab Initio Pseudopotentials, Fritz-Haber-Institut, Berlin, 1990.
26 H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.   DOI
27 S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58 (1987) 1861.   DOI
28 P.B. Allen, Phys. Rev. B 6 (1972) 2577.   DOI
29 P.B. Allen, R.C. Dynes, Phys. Rev. B 12 (1975) 905.   DOI
30 V.Z. Kresin, G.O. Zaitsev, Sov. Phys. JETP 47 (1978) 983.