• Title/Summary/Keyword: Spectral index

Search Result 454, Processing Time 0.034 seconds

Evaluating the effective spectral seismic amplification factor on a probabilistic basis

  • Makarios, Triantafyllos K.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.121-129
    • /
    • 2012
  • All contemporary seismic Codes have adopted smooth design acceleration response spectra, which have derived by statistical analysis of many elastic response spectra of natural accelerograms. The above smooth design spectra are characterized by two main branches, an horizontal branch that is 2.5 times higher than the peak ground acceleration, and a declining parabolic branch. According to Eurocode EN/1998, the period range of the horizontal, flat branch is extended from 0.1 s, for rock soils, up to 0.8 s for softer ones. However, from many natural recorded accelerograms of important earthquakes, the real spectral amplification factor appears to be much higher than 2.5 and this means that the spectrum leads to an unsafe seismic design of the structures. This point is an issue open to question and it is the object of the present study. In the present paper, the spectral amplification factor of the smooth design acceleration spectra is re-calculated on the grounds of a known "reliability index" for a desired probability of exceedance. As a pilot scheme, the seismic area of Greece is chosen, as it is the most seismically hazardous area in Europe. The accelerograms of the 82 most important earthquakes, which have occurred in Greece during the last 38 years, are used. The soil categories are taken into account according to EN/1998. The results that have been concluded from these data are compared with the results obtained from other strong earthquakes reported in the World literature.

Multi-Spectral Reflectance of Warm-Season Turfgrasses as Influenced by Deficit Irrigation (난지형 잔디의 가뭄 스트레스 상태로 인한 멀티스팩트럴 반사광 연구)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Remote sensing using multispectral radiometry may be a useful tool to detect drought stress in turf. The objective of this research was to investigate the correlation between drought stress and multispectral reflectance (MSR) from the turf canopy. St. Augustinegrass (Stenotaphrum secundatum[Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore paspalum Paspalum vaginatum Swartz.), 'Empire' zoysiagrass (Zoysia japonica Steud.), and 'Pensacola' bahiagrass (Paspalum notatumFlugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at 100%, 80%, 60%, or 40% of evapotranspiration (ET). Weekly evaluations included: a) shoot quality, leaf rolling, leaf firing b) soil moisture, chlorophyll content index; c) photosynthesis and d) multispectral reflectance. All the measurements were correlated with MSR data. Drought stress affected the infrared spectral region more than the visible spectral region. Reflectance sensitivity to water content of leaves was higher in the infrared spectral region than in the visible spectral region. Grasses irrigated at 100% and 80% of ET had no differences in normalized difference vegetation indices (NDVI), leaf area index (LAI), and stress indices. Grasses irrigated at 60% and 40% of ET had differences in NDVI, LAI, and stress indices. All measured wavelengths except 710nm were highly correlated (P < 0.0001) with turf visual quality, leaf firing, leaf rolling, soil moisture, chlorophyll content index, and photosynthesis. MSR could detect drought stress from the turf canopy.

Analysis of Cropland Spectral Properties and Vegetation Index Using UAV (UAV를 이용한 농경지 분광특성 및 식생지수 분석)

  • LEE, Geun-Sang;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.86-101
    • /
    • 2019
  • Remote sensing technology has been continuously developed both quantitatively and qualitatively, including platform development, exploration area, and exploration functions. Recently, the use cases and related researches in the agricultural field are increasing. Also, since it is possible to detect and quantify the condition of cropland and establish management plans and policy support for cropland and agricultural environment, it is being studied in various fields such as crop growth abnormality determination and crop estimation based on time series information. The purpose of this study was to analyze the vegetation index for agricultural land reclamation area using a UAV equipped with a multi-spectral sensor. In addition, field surveys were conducted to evaluate the accuracy of vegetation indices calculated from multispectral image data obtained using UAV. The most appropriate vegetation index was derived by evaluating the correlation between vegetation index calculated by field survey and vegetation index calculated from UAV multispectral image, and was used to analyze vegetation index of the entire area.

Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images (MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가)

  • Park, Jong-Hwa;La, Sang-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.

Development for the Evaluation Index of an Anesthesia Depth using the Bispectrum Analysis (Bispectrum 분석을 이용한 마취 심도 평가 지표 개발)

  • Park, Jun-Mo;Ye, Soo-Young;Nam, Ki-Gon;Jeon, Gye-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.750-755
    • /
    • 2007
  • The linear SEF (Spectral Edge Frequency) parameter and spectrum analysis method can not reflect the non-linear of EEG. This method can not contribute to acquire real time analysis and obtain a high confidence in the clinic due to low discrimination. To solve the problems, the development of a new index is carried out using the bispectrum analyzing the EEG including the non-linear characteristic. At the bispectrum analysis of the 2 dimension, the most significant's power spectrum density peaks appeared much at the specific area in awake and anesthesia state. Because many peaks are showed at the specific area in the frequency coordinate, these points are used to create the new index. Range of the index is 0-100. At the anesthesia, the index is 20-50 and at the awake, the index is 90-60. New index can discriminate the awake and anesthesia state.

Polarization Spectral Imaging System for Quantitative Evaluation of Port Wine Stain Blanching Following Laser Treatment

  • Jung, Byung-Jo
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.234-239
    • /
    • 2003
  • Objective methods to assess quantitatively port wine stain (PWS) blanching in response to laser therapy are needed to improve laser therapeutic outcome. Previous studies have attempted to assess objectively PWS color based on point measurement devices. To date, these approaches have typically been limited by a number of factors such as small test area and need for contact. To address these issues, a polarization spectral imaging system and an image analysis method have been developed to evaluate quantitatively erythema and melanin content distribution in skin. The developed polarization spectral imaging system minimizes artifacts such as glaring, shadowing, and non-uniform illumination that interfere with image fidelity. Furthermore, the image analysis method has been employed to get images of skin melanin and erythema indices from the acquired color images for quantitative analysis. Finally, using PWS patient color image, the effectiveness in laser treatment of PWS was evaluated by calculating relative erythema index image that is the relative erythema index of PWS region to the normal region. The developed device and analysis method appears to be a simple and effective method for quantitative analysis of PWS blanching.

Vegetation Information by spectral reflectance and Leaf Area Index (LAI) of Rice (벼의 분광반사율과 엽면적지수(LAI)를 이용한 식생정보)

  • Shin, Yong-Hee;Park, Jong-Hwa;Lee, Sang-Hyuk;Park, Min-Seo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.25-28
    • /
    • 2002
  • The aim of the present study was the evaluation of methods for estimating the vegetation information in the field on the basis of spectral reflectance measured farm field, in particular the estimation of Leaf Area Index(LAI). Variability in tissue optical properties was wavelength-dependent. For rice and bean, the lowest variation was in the visible spectral region and the highest in the near-infrared. The structural attributes of ecosystems determine the relative contribution of tissue and canopy factors that drive variation in a reflectance signal.

  • PDF

Shock Acceleration Model for Giant Radio Relics

  • Kang, Hyesung;Ryu, Dongsu;Jones, T.W.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.36.4-37
    • /
    • 2017
  • Although most of observed properties of giant radio relics detected in the outskirts of galaxy clusters could be explained by relativistic electrons accelerated at merger-driven shocks, a few significant puzzles remain. In some relics the shock Mach number inferred from X-ray observations is smaller than that estimated from radio spectral index. Such a discrepancy could be understood, if either the shock Mach number is nder-estimated in X-ray observation due to projection effects, or if pre-existing electrons with a flat spectrum are re-accelerated by a weak shock, retaining the flat spectral form. In this study, we explore these two scenarios by comparing the results of shock acceleration simulations with observed features of the so-called Toothbrush relic in the merging cluster 1RXS J060303.3. We find that both models could reproduce reasonably well the observed radio flux and spectral index profiles and the integrated radio spectrum. Either way, the broad transverse relic profile requires additional post shock electron acceleration by downstream turbulence.

  • PDF

URBAN COMPLEXITY ESTIMATION INDICES BASED ON 3D DISCRETE WAVELET TRANSFORM OF REMOTELY SENSED IMAGERY;THE PRELIMINARY INTERPRETATION WITH LAND COVER MAP

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.405-409
    • /
    • 2007
  • Each class in remotely sensed imagery has different spectral and spatial characteristics. Natural features have relatively smaller spatial changes than spectral changes. Meanwhile, urban area in which buildings, roads, and cars are included is inclined to face more changes of spatial variation than spectral one. This study aims to propose the new urban complexity index (UCI) based on the 3D DWT computation of remotely sensed imageries considering these characteristics. And then we analyze relation between index and land cover map. The 3DWUCI values are related to class and the indices of urban area are greater than natural area. The proposed UCI could be used to express effectively the standard of urban complexity over a wide area.

  • PDF

Highly Angle-tolerant Spectral Filter Based on an Etalon Resonator Incorporating a High Index Cavity

  • Noh, Tae-Hui;Yoon, Yeo-Taek;Lee, Sang-Shin;Choi, Duk-Yong;Lim, Seung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.299-304
    • /
    • 2012
  • A high angular tolerance spectral filter was realized incorporating an etalon, which consists of a $TiO_2$ cavity sandwiched between a pair of Ag/Ge mirrors. The effective angle was substantially extended thanks to the cavity's high refractive index. The device was created by embedding a 313-nm thick $TiO_2$ film in 16-nm thick Ag/Ge films through sputtering, with the Ge layer alleviating the roughness and adhesion of the Ag layer. For normal incidence, the observed center wavelength and transmission were ~900 nm and ~60%, respectively; throughout the range of $50^{\circ}$, the relative wavelength shift and transmission variation amounted to only ~0.06 and ~4%, respectively.