• Title/Summary/Keyword: Spectral finite difference scheme

Search Result 12, Processing Time 0.015 seconds

Current -Drpth Refraction and Diffraction Model for Irregular Waves (수심 및 흐름의 영향에 의한 굴ㆍ회절을 고려한 불규칙파 모형)

  • Jeong, Shin-Taek;Chae, Jang-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.260-265
    • /
    • 1994
  • A new set of elliptic wave equations describing the deformations of irregular waves on a large-scale current field in water of irregular depth is given, and using finite difference scheme an efficient numerical method is also presented. The elliptic equations are solved in a similar way to Initial value problem. This method is extensively used for the calculation of wave spectral transformation. and computation results agree very well with experimental data (Hiraishi, 1991). Finally numerical examples are presented concerning the interactions between waves and currents over a mildly sloping beach and also over a mound.

  • PDF

Modeling of Earthquake Ground Motion in a Small-Scale Basin (소규모 분지에서의 지진 지반운동 모델링)

  • Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.92-101
    • /
    • 2012
  • Three-dimensional finite-difference simulation in a small-scale half-sphere basin with planar free-surface is performed for an arbitrary shear-dislocation point source. A new scheme to deal with free-surface boundary condition is presented. Then basin parameters are examined to understand main characteristics on ground-motion response in the basin. To analyze the frequency content of ground motion in the basin, spectral amplitudes are compared with each other for four sites inside and outside the basin. Also particle motions for those sites are examined to find which kind of wave plays a dominant role in ground-motion response. The results show that seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to constructive interference of the direct Swave with basin-edge induced surface waves. Also, ground-motion amplification over the deepest part of the basin is relatively lower than that above shallow basin edge. In the small-scale basin with relatively simple bedrock interface, therefore, the ground-motion amplification may be more related to the source azimuth or direction of the incident waves into the basin rather than depth of it.