• Title/Summary/Keyword: Spectral filter

Search Result 354, Processing Time 0.025 seconds

Comparison of Image Fusion Methods to Merge KOMPSAT-2 Panchromatic and Multispectral Images (KOMPSAT-2 전정색영상과 다중분광영상의 융합기법 비교평가)

  • Oh, Kwan-Young;Jung, Hyung-Sup;Lee, Kwang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.39-54
    • /
    • 2012
  • The objective of this study is to propose efficient data fusion techniques feasible to the KOMPSAT-2 satellite images. The most widely used image fusion techniques, which are the high-pass filter (HPF), the intensity-hue-saturation-based (modified IHS), the pan-sharpened, and the wavelet-based methods, was applied to four KOMPSAT - 2 satellite images having different regional and seasonal characteristics. Each fusion result was compared and analyzed in spatial and spectral features, respectively. Quality evaluation of image fusion techniques was performed in both quantitative and visual analysis. The quantitative analysis methods used for this study were the relative global dimensional error (spatial and spectral ERGAS), the spectral angle mapper index (SAM), and the image quality index (Q4). The results of quantitative and visual analysis indicate that the pan-sharpened method among the fusion methods used for this study relatively has the suitable balance between spectral and spatial information. In the case of the modified IHS method, the spatial information is well preserved, while the spectral information is distorted. And also the HPF and wavelet methods do not preserve the spectral information but the spatial information.

Music and Voice Separation Using Log-Spectral Amplitude Estimator Based on Kernel Spectrogram Models Backfitting (커널 스펙트럼 모델 backfitting 기반의 로그 스펙트럼 진폭 추정을 적용한 배경음과 보컬음 분리)

  • Lee, Jun-Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.227-233
    • /
    • 2015
  • In this paper, we propose music and voice separation using kernel sptectrogram models backfitting based on log-spectral amplitude estimator. The existing method separates sources based on the estimate of a desired objects by training MSE (Mean Square Error) designed Winer filter. We introduce rather clear music and voice signals with application of log-spectral amplitude estimator, instead of adaptation of MSE which has been treated as an existing method. Experimental results reveal that the proposed method shows higher performance than the existing methods.

An Effective Feature Extraction Method for Fault Diagnosis of Induction Motors (유도전동기의 고장 진단을 위한 효과적인 특징 추출 방법)

  • Nguyen, Hung N.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.23-35
    • /
    • 2013
  • This paper proposes an effective technique that is used to automatically extract feature vectors from vibration signals for fault classification systems. Conventional mel-frequency cepstral coefficients (MFCCs) are sensitive to noise of vibration signals, degrading classification accuracy. To solve this problem, this paper proposes spectral envelope cepstral coefficients (SECC) analysis, where a 4-step filter bank based on spectral envelopes of vibration signals is used: (1) a linear predictive coding (LPC) algorithm is used to specify spectral envelopes of all faulty vibration signals, (2) all envelopes are averaged to get general spectral shape, (3) a gradient descent method is used to find extremes of the average envelope and its frequencies, (4) a non-overlapped filter is used to have centers calculated from distances between valley frequencies of the envelope. This 4-step filter bank is then used in cepstral coefficients computation to extract feature vectors. Finally, a multi-layer support vector machine (MLSVM) with various sigma values uses these special parameters to identify faulty types of induction motors. Experimental results indicate that the proposed extraction method outperforms other feature extraction algorithms, yielding more than about 99.65% of classification accuracy.

Multiple octave-band based genre classification algorithm for music recommendation (음악추천을 위한 다중 옥타브 밴드 기반 장르 분류기)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1487-1494
    • /
    • 2011
  • In this paper, a novel genre classification algorithm is proposed for music recommendation system. Especially, to improve the classification accuracy, the band-pass filter for octave-based spectral contrast (OSC) feature is designed considering the psycho-acoustic model and actual frequency range of musical instruments. The GTZAN database including 10 genres was used for 10-fold cross validation experiments. The proposed multiple-octave based OSC produces better accuracy by 2.26% compared with the conventional OSC. The combined feature vector based on the proposed OSC and mel-frequency cepstral coefficient (MFCC) gives even better accuracy.

SAMPLING ERROR ANALYSIS FOR SOIL MOISTURE ESTIMATION

  • Kim, Gwang-Seob;Yoo, Chul-sang
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.209-222
    • /
    • 2000
  • A spectral formalism was applied to quantify the sampling errors due to spatial and/or temporal gaps in soil moisture measurements. The lack of temporal measurements of the two-dimensional soil moisture field makes it difficult to compute the spectra directly from observed records. Therefore, the space-time soil moisture spectra derived by stochastic models of rainfall and soil moisture was used in their record. Parameters for both models were tuned with Southern Great Plains Hydrology Experiment(SGP'97) data and the Oklahoma Mesonet data. The structure of soil moisture data is discrete in space and time. A design filter was developed to compute the sampling errors for discrete measurements in space and time. This filter has the advantage in its general form applicable for all kinds of sampling designs. Sampling errors of the soil moisture estimation during the SGP'97 Hydrology Experiment period were estimated. The sampling errors for various sampling designs such as satedlite over pass and point measurement ground probe were estimated under the climate condition between June and August 1997 and soil properties of the SGP'97 experimental area. The ground truth design was evaluated to 25km and 50km spatial gap and the temporal gap from zero to 5 days.

  • PDF

A LOSSLESS CODING SCHEME FOR BAYER COLOR FILTER ARRAY IMAGES USING BLOCK-ADAPTIVE PREDICTION

  • Abe, Toshiyuki;Matsuday, Ichiro;Itohy, Susumu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.838-841
    • /
    • 2009
  • This paper proposes a novel lossless coding scheme for Bayer color filter array (CFA) images which are generally used as internal data of color digital cameras having a single image sensor. The scheme employs a block-adaptive prediction method to exploit spatial and spectral correlations in local areas containing different color signals. In order to allow adaptive prediction suitable for the respective color signals, four kinds of linear predictors which correspond to 2 ${\times}$ 2 samples of Bayer CFA are simultaneously switched block-by-block. Experimental results show that the proposed scheme outperforms other state-of-the-art lossless coding schemes in terms of coding efficiency for Bayer CFA images.

  • PDF

Principles and Analytical Applications of Acousto-Optic Tunable Filters

  • Tran, Chieu D.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.1101-1108
    • /
    • 1995
  • Acousto-optic tunable filter is a compact, all solid state electronic dispersive device. It is based on the acousto-optic interaction in an anisotropic crystal. Compared to conventional grating monochromators. the AOTF has no moving parts, wider spectral tuning range (from UV through visible and near-IR to IR), higher throughput, higher resolution, faster scanning (${\mu}s$) and random wavelength access. These features make it possible to use the filter to develop novel instruments which are not possible otherwise. The instrument development and unique advantages of such AOTF based instruments including the multidimensional fluorimeter, the multiwavelength thermal lens spectrometer, and the detectors for HPLC and flow injection analysis are described.

  • PDF