• Title/Summary/Keyword: Spectral clustering

Search Result 90, Processing Time 0.027 seconds

Threshold based User-centric Clustering for Cell-free MIMO Network (셀프리 다중안테나 네트워크를 위한 임계값 기반 사용자 중심 클러스터링)

  • Ryu, Jong Yeol;Lee, Woongsup;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.114-121
    • /
    • 2022
  • In this paper, we consider a user centric clustering in order to guarantee the performance of the users in cell free multiple-input multiple-output (MIMO) network. In the user centric clustering scheme, by using large scale fading coefficients of the connected access points (APs), each user decides own cluster with the APs having the higher the large scale fading coefficients than threshold value compared to the highest large scale fading coefficient. In the determined user centric clusters, the APs design the beamformers and power allocations in the distributed manner and the APs cooperatively transmit data to users by using beamformers and power allocations. In the simulation results, we verify the performance of user centric clustering in terms of the spectral efficiency and we also find the optimal threshold value in the given configuration.

Classification of Time-Series Data Based on Several Lag Windows

  • Kim, Hee-Young;Park, Man-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.377-390
    • /
    • 2010
  • In the case of time-series analysis, it is often more convenient to rely on the frequency domain than the time domain. Spectral density is the core of the frequency-domain analysis that describes autocorrelation structures in a time-series process. Possible ways to estimate spectral density are to compute a periodogram or to average the periodogram over some frequencies with (un)equal weights. This can be an attractive tool to measure the similarity between time-series processes. We employ the metrics based on a smoothed periodogram proposed by Park and Kim (2008) for the classification of different classes of time-series processes. We consider several lag windows with unequal weights instead of a modified Daniel's window used in Park and Kim (2008). We evaluate the performance under various simulation scenarios. Simulation results reveal that the metrics used in this study split the time series into the preassigned clusters better than do the raw-periodogram based ones proposed by Caiado et al. 2006. Our metrics are applied to an economic time-series dataset.

Recent Trends of Hyperspectral Imaging Technology (초분광 이미징 기술동향)

  • Lee, M.S.;Kim, K.S.;Min, G.;Son, D.H.;Kim, J.E.;Kim, S.C.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.86-97
    • /
    • 2019
  • Over the past 30 years, significant developments have been made in hyperspectral imaging (HSI) technologies that can provide end users with rich spectral, spatial, and temporal information. Owing to the advances in miniaturization, cost reduction, real-time processing, and analytical methods, HSI technologies have a wide range of applications from remote-sensing to healthcare, military, and the environment. In this study, we focus on the latest trends of HSI technologies, analytical methods, and their applications. In particular, improved machine learning techniques, such as deep learning, allows the full use of HSI technologies in classification, clustering, and spectral mixture algorithms. Finally, we describe the status of HSI technology development for skin diagnostics.

Clustering and classification of residential noise sources in apartment buildings based on machine learning using spectral and temporal characteristics (주파수 및 시간 특성을 활용한 머신러닝 기반 공동주택 주거소음의 군집화 및 분류)

  • Jeong-hun Kim;Song-mi Lee;Su-hong Kim;Eun-sung Song;Jong-kwan Ryu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.603-616
    • /
    • 2023
  • In this study, machine learning-based clustering and classification of residential noise in apartment buildings was conducted using frequency and temporal characteristics. First, a residential noise source dataset was constructed . The residential noise source dataset was consisted of floor impact, airborne, plumbing and equipment noise, environmental, and construction noise. The clustering of residential noise was performed by K-Means clustering method. For frequency characteristics, Leq and Lmax values were derived for 1/1 and 1/3 octave band for each sound source. For temporal characteristics, Leq values were derived at every 6 ms through sound pressure level analysis for 5 s. The number of k in K-Means clustering method was determined through the silhouette coefficient and elbow method. The clustering of residential noise source by frequency characteristic resulted in three clusters for both Leq and Lmax analysis. Temporal characteristic clustered residential noise source into 9 clusters for Leq and 11 clusters for Lmax. Clustering by frequency characteristic clustered according to the proportion of low frequency band. Then, to utilize the clustering results, the residential noise source was classified using three kinds of machine learning. The results of the residential noise classification showed the highest accuracy and f1-score for data labeled with Leq values in 1/3 octave bands, and the highest accuracy and f1-score for classifying residential noise sources with an Artificial Neural Network (ANN) model using both frequency and temporal features, with 93 % accuracy and 92 % f1-score.

Concatenative Speech Sythesis based on Diphone Clustering using improved spectral smoothing (개선된 스펙트럼 스무딩을 이용한 다이폰 클러스터링 기반의 연결 음성합성)

  • 장효종;김계영;최형일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.499-501
    • /
    • 2002
  • 최근의 합성음성단위 연결을 통한 음성합성 방법의 잘 알려진 문제점은 연결 부분에서 불연속이 발생한다는 것이다. 본 논문에서는 음성을 합성할 때 나타나는 스펙트럼의 불연속을 제거하기 위하여 개선된 스펙트럼 스무딩 방법을 제안한다. 그리고 보다 좋은 스무딩의 결과를 얻기 위하여 음성합성의 단위로는 문맥에 민감한 클러스터링된 다이폰을 사용한다. 스무딩 방법에서는 연결 구간에서의 다이폰 바운더리에서의 양쪽 스펙트럼의 분포를 고려하여 시간에 따라 가중치를 다르게 주어 스무딩을 수행한다. 또한 가중치를 결정할 때 비선형 함수인 B-Spline함수를 사용하여 스무딩을 수행하여 보다 자연스러운 스펙트럼을 생성 할 수 있었다.

  • PDF

Establishment of discrimination system using multivariate analysis of FT-IR spectroscopy data from different species of artichoke (Cynara cardunculus var. scolymus L.) (FT-IR 스펙트럼 데이터 기반 다변량통계분석기법을 이용한 아티초크의 대사체 수준 품종 분류)

  • Kim, Chun Hwan;Seong, Ki-Cheol;Jung, Young Bin;Lim, Chan Kyu;Moon, Doo Gyung;Song, Seung Yeob
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.324-330
    • /
    • 2016
  • To determine whether FT-IR spectral analysis based on multivariate analysis for whole cell extracts can be used to discriminate between artichoke (Cynara cardunculus var. scolymus L.) plants at the metabolic level, leaves of ten artichoke plants were subjected to Fourier transform infrared(FT-IR) spectroscopy. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and $1,100-950cm^{-1}$, respectively. These spectral regions reflect the quantitative and qualitative variations of amide I, II from amino acids and proteins ($1,700-1,500cm^{-1}$), phosphodiester groups from nucleic acid and phospholipid ($1,500-1,300cm^{-1}$) and carbohydrate compounds ($1,100-950cm^{-1}$). PCA revealed separate clusters that corresponded to their species relationship. Thus, PCA could be used to distinguish between artichoke species with different metabolite contents. PLS-DA showed similar species classification of artichoke. Furthermore these metabolic discrimination systems could be used for the rapid selection and classification of useful artichoke cultivars.

Categorical time series clustering: Case study of Korean pro-baseball data (범주형 시계열 자료의 군집화: 프로야구 자료의 사례 연구)

  • Pak, Ro Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.621-627
    • /
    • 2016
  • A certain professional baseball team tends to be very weak against another particular team. For example, S team, the strongest team in Korea, is relatively weak to H team. In this paper, we carried out clustering the Korean baseball teams based on the records against the team S to investigate whether the pattern of the record of the team H is different from those of the other teams. The technique we have employed is 'time series clustering', or more specifically 'categorical time series clustering'. Three methods have been considered in this paper: (i) distance based method, (ii) genetic sequencing method and (iii) periodogram method. Each method has its own advantages and disadvantages to handle categorical time series, so that it is recommended to draw conclusion by considering the results from the above three methods altogether in a comprehensive manner.

Analysis of Land-cover Types Using Multistage Hierarchical flustering Image Classification (다단계 계층군집 영상분류법을 이용한 토지 피복 분석)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.135-147
    • /
    • 2003
  • This study used the multistage hierarchical clustering image classification to analyze the satellite images for the land-cover types of an area in the Korean peninsula. The multistage algorithm consists of two stages. The first stage performs region-growing segmentation by employing a hierarchical clustering procedure with the restriction that pixels in a cluster must be spatially contiguous, and finally the whole image space is segmented into sub-regions where adjacent regions have different physical properties. Without spatial constraints for merging, the second stage clusters the segments resulting from the previous stage. The image classification of hierarchical clustering, which merges step-by step two small groups into one large one based on the hierarchical structure of digital imagery, generates a hierarchical tree of the relation between the classified regions. The experimental results show that the hierarchical tree has the detailed information on the hierarchical structure of land-use and more detailed spectral information is required for the correct analysis of land-cover types.

Segmentation of MR Brain Image Using Scale Space Filtering and Fuzzy Clustering (스케일 스페이스 필터링과 퍼지 클러스터링을 이용한 뇌 자기공명영상의 분할)

  • 윤옥경;김동휘;박길흠
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.339-346
    • /
    • 2000
  • Medical image is analyzed to get an anatomical information for diagnostics. Segmentation must be preceded to recognize and determine the lesion more accurately. In this paper, we propose automatic segmentation algorithm for MR brain images using T1-weighted, T2-weighted and PD images complementarily. The proposed segmentation algorithm is first, extracts cerebrum images from 3 input images using cerebrum mask which is made from PD image. And next, find 3D clusters corresponded to cerebrum tissues using scale filtering and 3D clustering in 3D space which is consisted of T1, T2, and PD axis. Cerebrum images are segmented using FCM algorithm with its initial centroid as the 3D cluster's centroid. The proposed algorithm improved segmentation results using accurate cluster centroid as initial value of FCM algorithm and also can get better segmentation results using multi spectral analysis than single spectral analysis.

  • PDF

Improved Algorithm of Hybrid c-Means Clustering for Supervised Classification of Remote Sensing Images (원격탐사 영상의 감독분류를 위한 개선된 하이브리드 c-Means 군집화 알고리즘)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.185-191
    • /
    • 2007
  • Remote sensing images are multispectral image data collected from several band divided by wavelength ranges. The classification of remote sensing images is the method of classifying what has similar spectral characteristics together among each pixel composing an image as the important algorithm in this field. This paper presents a pattern classification method of remote sensing images by applying a possibilistic fuzzy c-means (PFCM) algorithm. The PFCM algorithm is a hybridization of a FCM algorithm, which adopts membership degree depending on the distance between data and the center of a certain cluster, combined with a PCM algorithm, which considers class typicality of the pattern sets. In this proposed method, we select the training data for each class and perform supervised classification using the PFCM algorithm with spectral signatures of the training data. The application of the PFCM algorithm is tested and verified by using Landsat TM and IKONOS remote sensing satellite images. As a result, the overall accuracy showed a better results than the FCM, PCM algorithm or conventional maximum likelihood classification(MLC) algorithm.

  • PDF