• Title/Summary/Keyword: Spectral Modeling

Search Result 234, Processing Time 0.023 seconds

Application of Variable Selection for Prediction of Target Concentration

  • 김선우;김연주;김종원;윤길원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.525-527
    • /
    • 1999
  • Many types of chemical data tend to be characterized by many measured variables on each of a few observations. In this situation, target concentration can be predicted using multivariate statistical modeling. However, it is necessary to use a few variables considering size and cost of instrumentation, for an example, for development of a portable biomedical instrument. This study presents, with a spectral data set of total hemoglobin in whole blood, the possibility that modeling using only a few variables can improve predictability compared to modeling using all of the variables. Predictability from the model using three wavelengths selected from all possible regression method was improved, compared to the model using whole spectra (whole spectra: SEP = 0.4 g/dL, 3-wavelengths: SEP=0.3 g/dL). It appears that the proper selection of variables can be more effective than using whole spectra for determining the hemoglobin concentration in whole blood.

DEVS Modeling and Simulation for spectral characteristic on the strip of urin examination (뇨 분석용 strip의 분광학적 특성분석을 위한 DEVS 모델링 및 시뮬레이션)

  • Cho, Y.J.;Kim, J.H.;Nam, K.G.;Kim, J.H.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.145-149
    • /
    • 1997
  • This paper describes a methodology for the development of models of discrete event system. The methodology is based on transformation of continuous state space into discrete one to homomorphically represent dynamics of continuous processes in discrete events. This paper proposes a formal structure which can coupled discrete event system models within a framework. The structure employs the discrete event specification formalism for the discrete event system models. The proposed formal structure has been applied to develop a discrete event specification model for the complex spectral density analysis of strip for urin analyzer system. For this, spectral density data of strip is partitioned into a set of Phases based on events identified through urine spectrophotometry. For each phase, a continuous system of the continuous model for the urine spectral density analysis has been simulated by programmed C++. To validate this model, first develop the discrets event specification model, then simulate the model in the DEVSIM++ environment. It has the similar simulation results for the data obtained from the continuous system simulation. The comparison shows that the discrete event specification model represents dynamics of the urine spectral density at each phase.

  • PDF

Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads

  • Di Paola, M.;Muscolino, G.;Sofi, A.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.107-130
    • /
    • 2004
  • This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This procedure starts by generating sample functions of the generalized aerodynamic loads by using the spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure according to which just the first few significant loading and structural modal contributions are retained.

BRACKETT LINE-BASED MBH ESTIMATORS AND HOT DUST TEMPERATURES OF TYPE 1 AGNs FROM AKARI SPECTROSCOPIC DATA

  • KIM, DOHYEONG;IM, MYUNGSHIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.443-445
    • /
    • 2015
  • We provide results of near-infrared (NIR) spectroscopic observations of 83 nearby (0.002< z <0.48) and bright (K <14 mag) type 1 active galactic nuclei (AGNs). For the observations, we used the Infrared Camera (IRC) on AKARI allowing us to obtain the spectrum in the rarely studied spectral range of $2.5-5.0{\mu}m$. The $2.5-5.0{\mu}m$ spectral region suffers less dust extinction than ultra violet (UV) or optical wavelength ranges, and contains several important emission lines such as $Br{\beta}$ ($2.63{\mu}m$), $Br{\alpha}$ ($4.05{\mu}m$), and polycyclic aromatic hydrocarbon (PAH; $3.3{\mu}m$). The sample is selected from the bright quasar surveys of Palomar Green and SNUQSO, and AGNs with black hole (BH) masses estimated from reverberation mapping method. We measure the Brackett line properties for 11 AGNs, which enable us to derive BH mass estimators and investigate circum-nuclear environments. Moreover, we perform spectral modeling to fit the hot and warm dust components by adding photometric data from SDSS, 2MASS, WISE, and ISO to the AKARI spectra, and estimate hot and warm dust temperatures of ~1100K and ~220 K, respectively.

Analysis of vegetation change in Taehwa River basin using drone hyperspectral image and multiple vegetation indices (드론 초분광 영상과 다중 식생지수를 활용한 태화강 유역 식생변화 분석)

  • Kim, Yong-Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.97-110
    • /
    • 2021
  • Vegetation index information is an important figure that is used in many fields such as landscape architecture, urban planning, and environment. Vegetation may vary slightly in vegetation vitality depending on photosynthesis and chlorophyll content. In this study, a range of vegetation worth preserving in the Taehwa River water system was determined, and hyperspectral images of drones were acquired (August, October), and the results were presented through DVI(Normalized Defference Vegetation Index), EVI(Enhanced Vegetation Index), PRI(Photochemical Reflectance Index), ARI (Anthocyanin Reflectance Index) index analysis. In addition, field spectral data and VRS-GPS(Virtual Reference System-GPS) surveys were performed to ensure the quality and location accuracy of the spectral band. As a result of the analysis, NDVI and EVI showed low vegetation vitality in October, -0.165 and -0.085, respectively, and PRI and ARI increased to 0.011 and 7.588 in October, respectively. For general vegetation vitality, it was suggested that NDVI and EVI analysis were effectively performed, and PRI and ARI were thought to be effective in analyzing detailed characteristics of plants by spectral band. It is expected that it can be widely used for park design and landscape information modeling by using drone image information construction and vegetation information.

A New Iron Emission Template for Active Galactic Nuclei

  • Park, Daeseong;Barth, Aaron J.;Ho, Luis C.;Laor, Ari
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.36.2-36.2
    • /
    • 2019
  • Fe II emission is a prominent and ubiquitous feature in the spectra of broad-line Active Galactic Nuclei (AGN) by producing a pseudo-continuum from UV to optical with complex and strong blends of the numerous emission lines themselves, other emission lines, and continuum. Since theoretical modeling of such intricate Fe II emission is very difficult and still far from able to reproduce observed data in detail, an empirical iron emission template, derived from observations of a narrow-line Seyfert 1 galaxy, is an essential and practical tool to obtain accurate measurements of all the emission lines and continuum in AGN spectra. However, the existing iron templates, based on the single prototypical strong Fe II emitter I Zw 1, are suffering from inadequate S/N and non-simultaneous, inconsistent data with limited wavelength coverage, which consequently limit the accuracy of all the spectral measurements. To overcome the limitations and construct an improved iron template with wide spectral coverage, high-quality UV and optical spectra for the new and better identified template galaxy, Mrk 493, were successfully obtained from our HST STIS program (GO-14744). We will show the preliminary results for multicomponent spectral decomposition of the data and template construction with application tests to various AGN spectra and comparison with previous templates.

  • PDF

Spectral Element Modeling of Rotating Shafts by Using Variational Method (변분법을 이용한 회전축의 스펙트럴요소 모델링)

  • Yong, Suk-Jin;Lee, Jae-Sng;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.923-926
    • /
    • 2007
  • In this paper, the vibration of a rotating shaft with a thin rigid disk is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. A spectral element model is developed by using the variation method for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element. The result of vibration analysis by finite element method is compared to the result of this research.

  • PDF

The Spectrally Accurate Method Applied to Wave-Current Interaction as a Freak Wave Generation Mechanism

  • Sung, Hong-Gun;Hong, Key-Yong;Kyoung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. The present model of the fluid motion is based on the Navier-Stokes equations incorporating a velocity-pressure formulation. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an intermediate stage of development, solution procedure and characteristic aspects of the present modeling and numerical method features are addressed in detail, and numerical results for wave-current interaction is left as further study.

  • PDF

3-D reverse-time migration using acoustic wave equation: An experience of SEG/EAGE salt data set

  • Yoon, Kwang-Jin;Shin, Chang-Soo;Hong, Soon-Duk;Yang, Seung-Jin;Suh, Sang-Yong
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.156-158
    • /
    • 2002
  • Reverse-time migration has no dip limitations and one of the most promising methods to preserve true amplitudes. We applied 3-D prestack reverse time migration based on a pseudo-spectral implementation of the acoustic wave equation to the SEG/EAGE salt dome synthetic data set. We were able to illuminate sub salt reflectors of the SEG/EAGE salt model that were barely observable in the Kirchhoff migration images. Using the pseudo-spectral modeling technique, we could implement reverse-time migration within the core memory, which could be equipped to a personal computer.

  • PDF

Spectral Element Modeling of the Rotating Shafts on Bearing Supports (베어링으로 지지된 회전축의 스펙트럴요소 모델링)

  • Lee, Jae-Sng;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.826-830
    • /
    • 2008
  • In this paper, the vibration of a rotating shaft with a thin rigid disk on bearing supports is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. And flexible supports are used to analyse the bearings. A spectral element model is developed for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element. The result of vibration analysis by finite element method is compared to the result of this research.

  • PDF