• Title/Summary/Keyword: Spectral Magnitude

Search Result 185, Processing Time 0.023 seconds

Two-step a priori SNR Estimation in the Log-mel Domain Considering Phase Information (위상 정보를 고려한 로그멜 영역에서의 2단계 선험 SNR 추정)

  • Lee, Yun-Kyung;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.3 no.1
    • /
    • pp.87-94
    • /
    • 2011
  • The decision directed (DD) approach is widely used to determine a priori SNR from noisy speech signals. In conventional speech enhancement systems with a DD approach, a priori SNR is estimated by using only the magnitude components and consequently follows a posteriori SNR with one frame delay. We propose a phase-dependent two-step a priori SNR estimator based on the minimum mean square error (MMSE) in the log-mel spectral domain so that we can consider both magnitude and phase information, and it can overcome the performance degradation caused by one frame delay. From the experimental results, the proposed estimator is shown to improve the output SNR of enhanced speech signals by 2.3 dB compared to the conventional DD approach-based system.

  • PDF

BS2fit: A NEW TOOL FOR ANALYSING SPECTRA AND COLOR-MAGNITUDE DIAGRAMS OF GALAXIES AND CLUSTERS

  • LI, ZHONGMU;MAO, CAIYAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.539-541
    • /
    • 2015
  • We present a new tool for studying the spectral energy distributions (SEDs) and color-magnitude diagrams (CMDs) of galaxies and star clusters, BINARY STAR TO FIT (BS2fit). A key feature of this tool is that it takes the effects of binaries, stellar rotation and star formation history into account. It can be used to determine many parameters, including distance, extinction, binary fraction, rotational star fraction, and star formation history. Because more factors are included than in previous tools, BS2fit can potentially give new insight into the properties of galaxies and clusters. One can contact the authors for cooperation and helps via.

A Study of response Spectrums and characteristics of Time-Frequency Domain of Microearthquakes in the Central Part of South Korea (남한 중부지역 미소지진들의 응답 스펙트럼 및 시간-주파수 영역에서의 특성에 관한 연구)

  • 이전희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.72-82
    • /
    • 1999
  • The microearthquake and explosion events recorded in the seismic KNUE(Korea National University of Education) network were analyzed. The seismic data were recorded from Dec. 1997 to Dec. 1998. Total of 118 records consisted of 24 earthquake and 4 explosion events were instrumented at 6 stations. Spectral values increases as magnitude increases and the predominant frequency band expands to low frequency. zone as magnitude increases. Three-dimensional spectrograms(time frequency. amplitude) were also synthesized in order to discriminate microearthquakes and artificial underground explosions. The waves from microearthquakes show that frequency content of dominant amplitude appeared above 10 Hz and the discrimination can be performed in almost all the frequency domain of 3-d spectrogram.

  • PDF

E-Polarized Reflection Coefficient by a Tapered Resistive Strip Grating with Infinite Resistivity at Strip-Edges (저항면의 양 끝에서 무한대로 변하는 저항률을 갖는 조기격자에 의한 E-분극 반사계수)

  • 윤의중;양승인
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.60-66
    • /
    • 1994
  • The scattering problem by E-polarized plane wave with oblique incidence on a tapered resistive strip grating with infinite resistivity at strip-edges is analyzed by the method of moments in the spectral domain. Then the induced surface current density is expanded in a series of Ultraspherical polynomials of the zeroth order. The expansion coefficients are calculated numerically in the spectral domain, the numerical results of the geometricoptical reflection coefficient for the tapered resistivity in this paper are compared with those for the existing uniform resistivity. And the position of sharp variation points in the magnitude of the geometric-optical reflection coefficient can be moved by varying the incident angle and the strip spacing. It is found out that these sharp variation points are due to the transition of higher modes between the propagation mode and the evanescent mode.

  • PDF

Stability Analysis of a Dynamic System under Random Parametric Excitation (불규칙 매개변수 가진을 받는 동적시스템의 안정성 해석)

  • Heo, Hoon;Cho, Yun-Hyun;Yang, Jae-Hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.55-59
    • /
    • 1997
  • Investigation is performed on the stability of general form of dynamic system whose damping and stiffness are varying in irregular manner along time, which is a preliminary result in the course of research on the characteristic and the control of the stochastic system. The governing equation of the 'parametric' system is derived via F-P-K approach in stochastic sense. The influence on the stability due to the magnitude of auto power spectral density and cross power spectral density of random variation of system parameters is studied and the region is surveyed.

  • PDF

Flow Control and Drag Reduction of a Circular Cylinder by an External Magnetic Field (자기장을 사용한 원형주상체 주위의 유동 제어 및 저항감소)

  • 윤현식;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.70-78
    • /
    • 2004
  • The present study numerically investigates two-dimensional laminar flow past a circular cylinder in an aligned magnetic field using the spectral method. Numerical simulations are performed for flow fields with Re=100 and 200 in the range of 0$\leq$N$\leq$10, where Ν is the Stuart number that is the ratio of electromagnetic force to inertial force. The present study reports the detailed information of flow quantities on the cylinder surface at different Stuart numbers. It is shown that the vortex shedding can be controlled by the magnetic force representing the Stuart number. As Ν increases, the vortex shedding becomes weaker, resulting in drag reduction whose magnitude is the largest at a critical value. In addition, as the magnetic force increases, the lift amplitude decreases, reaching zero at the critical number.

Study on Direct Dipolar Effect of Neighboring Protons in Proton Coupled $^{13}C$ Relaxation Experiment

  • NamGung, Hyeon;Lee, Im Pyo;Lee, Jo Ung
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1077-1084
    • /
    • 2000
  • The dipolar effect of neighboring protons that are not directly bonded to the carbon of interest on coupled carbon-13 relaxation in a simple organic molecule has been studied by comparing the relaxation behaviors of labeled carbon-13 in $Br13CH_2COOH$ with those in $BrCH_213COOH.$ Various pulse sequences, such as coupled inversion recovery pulse sequence, J-negative and J-positive pulse sequence, and nonselective and selective proton ${\pi}pulse$ sequence, were employed to perform the required coupled spin relaxation experiments. To gain information on various spectral densities, including that of dipolar-CSA cross correlation, the experiments were performed on two different spectrometers, operating, respectively, at 50.31 and 125.51MHz for 13C. The magnitude of CH dipolar spectral densities for $BrCH_213COOH$ was found to be about 8% of those for $Br13CH_2COOH$, which means the effect due to the protons not directly bonded to the carbon of interest is small but not completely negligible.

Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. III. Horizontal Branch Stars and Mass Loss in NGC 6791

  • Yu, Hyein;An, Deokkeun;Chung, Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.61.2-61.2
    • /
    • 2014
  • We present a set of fiducial sequences of horizontal-branch stars in bright Galactic globular clusters, which have previously been observed in the Sloan Digital Sky Survey (SDSS). We derive fiducial lines on color-magnitude diagrams in multiple color indices (g - r, g - i, g - z, and u - g), after rejecting foreground and background objects as well as RR Lyrae variables utilizing these color indices. We compare our fiducial sequences with model predictions from Yonsei-Yale evolutionary tracks and BaSel spectral libraries, and find a satisfactory agreement between them in terms of their color-magnitude relations, except in u - g. We also compare theoretical models to color-magnitude diagrams of two open clusters (M67 and NGC 6791). Based on our best available cluster distance and reddening, we find that the mass of red clump (RC) stars in NGC 6791 is about a factor of two smaller than an earlier estimate from the application of asteroseismic scaling relations for solar-like oscillations. The smaller RC mass implies an enhanced mass loss along the red giant branch, which is in accordance with other compelling evidences found in this metal-rich system. Our estimated luminosity of RC stars in NGC 6791 is about 0.2 mag fainter than in earlier investigations based on solar-metallicity calibrations, and results in ~10% reduction in the RC-based distance estimation, when applied to metal-rich systems such as in the Galactic bulge.

  • PDF

Sensitivity Analysis of Finite Fault Model in Stochastic Ground Motion Simulations (추계학적 지진동 모사에서 유한단층 모델의 민감도 분석)

  • Lee, Sang-Hyun;Rhie, Junkee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.159-164
    • /
    • 2024
  • Recent earthquakes in Korea, like Gyeongju and Pohang, have highlighted the need for accurate seismic hazard assessment. The lack of substantial ground motion data necessitates stochastic simulation methods, traditionally used with a simplistic point-source assumption. However, as earthquake magnitude increases, the influence of finite faults grows, demanding the adoption of finite faults in simulations for accurate ground motion estimates. We analyzed variations in simulated ground motions with and without the finite fault method for earthquakes with magnitude (Mw) ranging from 5.0 to 7.0, comparing pseudo-spectral acceleration. We also studied how slip distribution and hypocenter location affect simulations for a virtual earthquake that mimics the Gyeongju earthquake with Mw 5.4. Our findings reveal that finite fault effects become significant at magnitudes above Mw 5.8, particularly at high frequencies. Notably, near the hypocenter, the virtual earthquake's ground motion significantly changes using a finite fault model, especially with heterogeneous slip distribution. Therefore, applying finite fault models is crucial for simulating ground motions of large earthquakes (Mw ≥ 5.8 magnitude). Moreover, for accurate simulations of actual earthquakes with complex rupture processes having strong localized slips, incorporating finite faults is essential even for more minor earthquakes.

The Identification of Generation Mechanism of Noise and Vibrtaion and Transmission Characteristics for Engine System - The Source Identification and Noise Reduction of Compartment by Multidimensional Spectral Analysis and Vector Synthesis Method - (엔진의 소음.진동발생기구 및 전달특성 규명 -다차원해석법과 벡터합성법에 의한 차실소음원 규명 및 소음저감 -)

  • O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1127-1140
    • /
    • 1997
  • With the study for identifying the transmission characteristics of vibration and noise generated by operating engine system of a vehicle, recently many engineers have studied actively the reduction of vibration and noise inducing uncomfortableness to the passenger. In this study, output noise was analyzed by multi-dimensional spectral analysis and vector synthesis method. The multi-dimensional analysis method is very effective in case of identification of primary source, but this method has little effect on suggestion for interior noised reduction. For compensation of this, vector synthesis method was used to obtain effective method for interior noise reduction, after identifying primary source for output noise. In this paper, partial coherence function of each input was calculated to know which input was most coherent to output noise, then with simulation of changes for input magnitude and phase by vector synthesis diagram, the trends of synthesized output vector was obtained. As a result, the change of synthesized output vector could be estimated.