• Title/Summary/Keyword: Spectral Index

Search Result 459, Processing Time 0.03 seconds

Application of Spectral Mixture Analysis to Geological Mapping using LANDSAT 7 ETM+ and ASTER Images: Mineral Potential Mapping of Mongolian Plateau

  • Kim Seung Tae;Lee Kiwon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.425-427
    • /
    • 2004
  • Motivation of this study is based on these two aspects: geologic uses of ASTER and application scheme of Spectral Mixture Analysis. This study aims at geologic mapping for mineral exploration using ASTER and LANDSAT 7 ETM+ at Mongolian plateau region by SMA. After basic pre-processing such as the normalization, geometric corrections and calibration of reflectance, related to endmembers selection and spectral signature deviation, both methods using spectral library and using PPI(Pixel Purity Index) are performed and compared on a given task. Based on these schemes, SMA is performed using LANDSAT 7 ETM+ and ASTER image. As the results, fraction map showing geologic rock types are enough to meet purposes such as geologic mapping and mineral potential mapping in the case of both uses of these different types of remotely sensed images. It concluded that this approach based on SMA with LANDSAT and ASTER is regarded as one of effective schemes for geologic remote sensing.

  • PDF

An Analysis of Spectral Pattern for Detecting Pine Wilt Disease Using Ground-Based Hyperspectral Camera (지상용 초분광 카메라를 이용한 소나무재선충병 감염목 분광 특성 분석)

  • Lee, Jung Bin;Kim, Eun Sook;Lee, Seung Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.665-675
    • /
    • 2014
  • In this paper spectral characteristics and spectral patterns of pine wilt disease at different development stage were analyzed in Geoje-do where the disease has already spread. Ground-based hyperspectral imaging containing hundreds of wavelength band is feasible with continuous screening and monitoring of disease symptoms during pathogenesis. The research is based on an hyperspectral imaging of trees from infection phase to witherer phase using a ground based hyperspectral camera within the area of pine wilt disease outbreaks in Geojedo for the analysis of pine wilt disease. Hyperspectral imaging through hundreds of wavelength band is feasible with a ground based hyperspectral camera. In this research, we carried out wavelength band change analysis on trees from infection phase to witherer phase using ground based hyperspectral camera and comparative analysis with major vegetation indices such as Normalized Difference Vegetation Index (NDVI), Red Edge Normalized Difference Vegetation Index (reNDVI), Photochemical Reflectance Index (PRI) and Anthocyanin Reflectance Index 2 (ARI2). As a result, NDVI and reNDVI were analyzed to be effective for infection tree detection. The 688 nm section, in which withered trees and healthy trees reflected the most distinctions, was applied to reNDVI to judge the applicability of the section. According to the analysis result, the vegetation index applied including 688 nm showed the biggest change range by infection progress.

Application of the modified fast fourier transformation weighted with refractive index dispersion far an accurate determination of film thickness (굴절률 분산을 반영한 고속 푸리에 변환 및 막두께 정밀결정)

  • 김상준;김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.266-271
    • /
    • 2003
  • The reflectance spectrum of optical films thicker than a few microns shows an intensity oscillation due to interference. Since the spectral period of the oscillation is inversely related to film thickness, the thickness of an optical film can be determined from the spectral frequency of the oscillation. For rapid data processing, the spectral frequency is obtained by use of a Fast Fourier Transformation technique. The conventional method of applying a Fast Fourier Transformation to the reflectance spectrum versus photon energy is modified so as to clear the ambiguity in choosing the proper effective refractive index value and to prevent the broadening of the Fourier transformed peak due to the refractive index dispersion. This technique of modified Fast Fourier Transformation is suggested by the authors for the first time to their knowledge. From the analysis of the calculated reflectance spectrum of a 30-${\mu}{\textrm}{m}$-thick dielectric film. it is shown to improve the accuracy in determining film thickness by a great amount. The improved accuracy of the modified Fast Fourier Transformation is also confirmed from the analysis of the reflectance spectra of a sample with 80-${\mu}{\textrm}{m}$-thick cover layer and 13-${\mu}{\textrm}{m}$-thick spacer layer on a PC substrate.

GENERATION OF AN IMPERVIOUS MAP BY APPLYING TASSELED-CAP ENHANCEMENT USING KOMPSAT-2 IMAGE

  • Koh, Chang-Hwan;Ha, Sung-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.378-381
    • /
    • 2008
  • The regulating and relaxing targets in the Land Use Regulation and Total Maximum Daily Loads are influenced by Land cover information. For the providing more accurate land information, this study attempted to generate an impervious surface map using KOMPSAT-2 image which a Korea manufactured high resolution satellite image. The classification progress of this study carried out by tasseled-cap spectral enhancement through each class extraction technique neither existing classification method. KOMPSAT-2 image of this study is enhanced by Soil Brightness Index(SBI), Green vegetation Index(GVI), None-Such wetness Index(NWI). Then ranges of extracted each index in enhanced image are determined. And then, Confidence Interval of classes was determined through the calculating Non-exceedance Probability. Spectral distributions of each class are changed according to changing of Control coefficient(${\alpha}$) at the calculated Non-exceedance Probability. Previously, Land cover classification map was generated based on established ranges of classes, and then, pervious and impervious surface was reclassified. Finally, impervious ratio of reclassified impervious surface map was calculated with blocks in the study area.

  • PDF

Comparison of Fusion Methods for Generating 250m MODIS Image

  • Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.305-316
    • /
    • 2010
  • The MODerate Resolution Imaging Spectroradiometer (MODIS) sensor has 36 bands at 250m, 500m, 1km spatial resolution. However, 500m or 1km MODIS data exhibits a few limitations when low resolution data is applied at small areas that possess complex land cover types. In this study, we produce seven 250m spectral bands by fusing two MODIS 250m bands into five 500m bands. In order to recommend the best fusion method by which one acquires MODIS data, we compare seven fusion methods including the Brovey transform, principle components algorithm (PCA) fusion method, the Gram-Schmidt fusion method, the least mean and variance matching method, the least square fusion method, the discrete wavelet fusion method, and the wavelet-PCA fusion method. Results of the above fusion methods are compared using various evaluation indicators such as correlation, relative difference of mean, relative variation, deviation index, peak signal-to-noise ratio index and universal image quality index, as well as visual interpretation method. Among various fusion methods, the local mean and variance matching method provides the best fusion result for the visual interpretation and the evaluation indicators. The fusion algorithm of 250m MODIS data may be used to effectively improve the accuracy of various MODIS land products.

A Study on the Retrieval of River Turbidity Based on KOMPSAT-3/3A Images (KOMPSAT-3/3A 영상 기반 하천의 탁도 산출 연구)

  • Kim, Dahui;Won, You Jun;Han, Sangmyung;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1285-1300
    • /
    • 2022
  • Turbidity, the measure of the cloudiness of water, is used as an important index for water quality management. The turbidity can vary greatly in small river systems, which affects water quality in national rivers. Therefore, the generation of high-resolution spatial information on turbidity is very important. In this study, a turbidity retrieval model using the Korea Multi-Purpose Satellite-3 and -3A (KOMPSAT-3/3A) images was developed for high-resolution turbidity mapping of Han River system based on eXtreme Gradient Boosting (XGBoost) algorithm. To this end, the top of atmosphere (TOA) spectral reflectance was calculated from a total of 24 KOMPSAT-3/3A images and 150 Landsat-8 images. The Landsat-8 TOA spectral reflectance was cross-calibrated to the KOMPSAT-3/3A bands. The turbidity measured by the National Water Quality Monitoring Network was used as a reference dataset, and as input variables, the TOA spectral reflectance at the locations of in situ turbidity measurement, the spectral indices (the normalized difference vegetation index, normalized difference water index, and normalized difference turbidity index), and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived atmospheric products(the atmospheric optical thickness, water vapor, and ozone) were used. Furthermore, by analyzing the KOMPSAT-3/3A TOA spectral reflectance of different turbidities, a new spectral index, new normalized difference turbidity index (nNDTI), was proposed, and it was added as an input variable to the turbidity retrieval model. The XGBoost model showed excellent performance for the retrieval of turbidity with a root mean square error (RMSE) of 2.70 NTU and a normalized RMSE (NRMSE) of 14.70% compared to in situ turbidity, in which the nNDTI proposed in this study was used as the most important variable. The developed turbidity retrieval model was applied to the KOMPSAT-3/3A images to map high-resolution river turbidity, and it was possible to analyze the spatiotemporal variations of turbidity. Through this study, we could confirm that the KOMPSAT-3/3A images are very useful for retrieving high-resolution and accurate spatial information on the river turbidity.

Comparative Analysis of Image Fusion Methods According to Spectral Responses of High-Resolution Optical Sensors (고해상 광학센서의 스펙트럼 응답에 따른 영상융합 기법 비교분석)

  • Lee, Ha-Seong;Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This study aims to evaluate performance of various image fusion methods based on the spectral responses of high-resolution optical satellite sensors such as KOMPSAT-2, QuickBird and WorldView-2. The image fusion methods used in this study are GIHS, GIHSA, GS1 and AIHS. A quality evaluation of each image fusion method was performed with both quantitative and visual analysis. The quantitative analysis was carried out using spectral angle mapper index (SAM), relative global dimensional error (spectral ERGAS) and image quality index (Q4). The results indicates that the GIHSA method is slightly better than other methods for KOMPSAT-2 images. On the other hand, the GS1 method is suitable for Quickbird and WorldView-2 images.

Pansharpening Method for KOMPSAT-2/3 High-Spatial Resolution Satellite Image (아리랑 2/3호 고해상도 위성영상에 적합한 융합기법)

  • Oh, Kwan-Young;Jung, Hyung-Sup;Jeong, Nam-Ki
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.161-170
    • /
    • 2015
  • This paper presents an efficient image fusion method to be appropriate for the KOMPSAT-2 and 3 satellites. The proposed method is based on the well-established component substitution (CS) approach. The proposed method is divided into two parts: 1) The first step is to create a intensity image by the weighted-averaging operation of a multi-spectral (MS) image and 2) the second step is to produce an optimal high-frequency image using the statistical properties of the original MS and panchromatic (PAN) images. The performance of the proposed method is evaluated in both quantitative and visual analysis. Quantitative assessments are performed by using the relative global dimensional synthesis error (Spatial and Spectral ERGAS), the image quality index (Q4), and the spectral angle mapper index (SAM). The qualitative and quantitative assessment results show that the fusion performance of the proposed method is improved in both the spectral and spatial qualities when it is compared with previous CS-based fusion methods.

Estimation of Rice Canopy Leaf Area Index(LAI) by Spectral Reflectance of Solar Radiation in Paddy Field (태양광 반사율을 이용한 벼 군락의 엽면적지수 추정)

  • 이정택;이춘우;주문갑;홍석영
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.173-181
    • /
    • 1997
  • To estimate the leaf area index(LAI) of rice plant by non-destructive method, spectral reflectance from rice plant canopy was measured by using the spectroradiometer (LI-1800, LICOR Inc.) with one week interval during the rice growing season at Suwon paddy field in 1993. LAI of two medium late maturing varieties, Daechungbyeo and Ilpumbyeo, and one early maturing variety, Jinbubyeo, were observed and compared with those estimated by vegetation index. The reflectance(R) of visible wavelength remained less than 0.1 over entire growing season, but that of near infrared wavelength remained from 0.1 to 0.5 with the significant positive correlation with LAI. Vegetation index determined by the reflectance of visible against near infrared wavelength showed high correlation with LAI of rice canopy. Vegetation index derived from wide band ratio, NIR(720~1, 100nm) /Blue(400~500nm), showed the highest correlation coefficient with LAI. Vegetation index derived from narrow band(10nm interval) ratio, R910/R460, from transplanting to heading stage corresponded well to measured values (Y=0.16799X-0.79776 ; $R^2$=0.94). But another vegetation index, NIR(720~1, 100nm) /Red (600~700nm), showed higher correlation with LAI than NIR /Blue did from heading stage to maturity.

  • PDF

Availability of Normalized Spectra of Landsat/TM Data by Their Band Sum

  • Ono, Akiko;Kajiwara, Koji;Honda, Yoshiaki;Ono, Atsuo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.573-575
    • /
    • 2003
  • In satellite spectra, Though the magnitude varies with intensity of sunstroke, dip angle of land so on, the shape is less deformed with these effects. from this point of view, we have developed a spectral shape-dependent analysis utilizing a normalization procedure by the spectral integral and applied it to Landsat/TM spectra. Inevitable topographic and atmospheric effects can be suppressed. The correction algorithm is very simple and timesaving and the suppression of topographic effects is especially effective. Normalized band 4 is almost linear to NDVI values, and is available to the vegetation index.

  • PDF