• Title/Summary/Keyword: Spectral Hole

Search Result 70, Processing Time 0.022 seconds

Optical Properties and Persistent Spectral Hole Burning of $Sm^{2+}$-doped into $Mg_{0.5}Sr_{0.5}FCl_{0.5}Br_{0.5}$ Mixed Crystal ($Mg_{0.5}Sr_{0.5}FCl_{0.5}Br_{0.5}$ 혼합결정내에 도핑된 $Sm^{2+}$의 광학적 성질 및 영구적 홀생성)

  • 조현갑;장기완;김일곤;조은진;박성태;정용화;서효진
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.136-137
    • /
    • 2002
  • 급속도로 발전하는 정보화사회는 정보저장 및 처리에 있어서 고밀도, 대용량의 정보저장 매체를 요구한다. 따라서 3 차원적인 정보저장을 위한 연구가 활발히 진행되고 있으며, 영구적 홀 생성을 이용한 정보의 저장 및 처리도 활발히 연구되고 있는 분야 중의 하나이다. 실질적으로 응용에 필요한 실온에서의 영구적 스펙트럼 홀 생성은 희토류 금속이 첨가된 유리나 결정에서 관측되고 있는데, 이는 대부분 +2가 형태로 주입된 희토류 금속의 광학적 성질을 이용하는 것이다. (중략)

  • PDF

Adaptive LPC for Performance Enhancement of Audio Coding (오디오 부호화의 성능 향상을 위한 가변 LPC 기술)

  • Ham, Woo-Gyu;Ku, Ja-Seong;Kim, Ki-Jun;Kang, Kyeongok;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.6-7
    • /
    • 2013
  • 저전송률 오디오 부호화기의 성능 향상을 위해 가변 LPC 기반으로 스펙트럼을 평탄화 하는 방법을 제안한다. 제안한 방법은 대역별 scale factor를 동일하게 하여 비트 효율을 증가시키고 spectral hole이 발생하는 문제점을 해결할 수 있다. 또한, 가변 LPC 필터를 사용하여 프레임 특성에 따라 스펙트럼 평탄화 강도를 가변적으로 조절하여 성능 향상을 제공한다. 제안한 방법이 일반 LPC 필터 방법보다 저대역의 부호화 성능을 향상시키고 스테레오 왜곡을 감소시키는 것을 확인하였다.

  • PDF

Heterojunction of FeOOH and TiO2 for the Formation of Visible Light Photocatalyst

  • Rawal, Sher Bahadur;Chakraborty, Ashok Kumar;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2613-2616
    • /
    • 2009
  • FeOOH/$TiO_2$, a heterojunction structure between FeOOH and $TiO_2$, was prepared by covering the surface of the $\sim$100-nm-sized FeOOH particles with Degussa P25 by applying maleic acid as an organic linker. Under visible light irradiation (${\lambda}{\geq}$ 420 nm), FeOOH/$TiO_2$ showed a notable photocatalytic activity in removal of gaseous 2-propanol and evolution of $CO_2$. It was found that FeOOH reveals a profound absorption in the spectral range of 400 - 550 nm, and its valence band (VB) level is located relatively lower than that of $TiO_2$. The considerable photocatalytic efficiency of the FeOOH/$TiO_2$ under visible light irradiation was therefore deduced to be caused by the hole transfer between the VB of FeOOH and $TiO_2$.

A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system

  • Lee, Heon-Bok;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.346-349
    • /
    • 2008
  • A metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) is proposed as an effective UV sensing device for integration with a GaN n-channel MISFET on auto-doped p-type GaN grown on a silicon substrate. Due to the high hole barrier of the metal-p-GaN contact, the dark current density of the fabricated MSM PD was less than $3\;nA/cm^2$ at a bias of up to 5 V. Meanwhile, the UV/visible rejection ratio was 400 and the cutoff wavelength of the spectral responsivity was 365 nm. However, the UV/visible ratio was limited by the sub-bandgap response, which was attributed to defectrelated deep traps in the p-GaN layer of the MSM PD. In conclusion, an MSM PD has a high process compatibility with the n-channel GaN Schottky barrier MISFET fabrication process and epitaxy on a silicon substrate.

MISCLASSIFIED TYPE 1 AGNS IN THE LOCAL UNIVERSE

  • Woo, Jong-Hak;Kim, Ji-Gang;Park, Daeseong;Bae, Hyun-Jin;Kim, Jae-Hyuk;Lee, Seung-Eon;Kim, Sang Chul;Kwon, Hong-Jin
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.5
    • /
    • pp.167-178
    • /
    • 2014
  • We search for misclassified type 1 AGNs among type 2 AGNs identified with emission line flux ratios, and investigate the properties of the sample. Using 4 113 local type 2 AGNs at 0.02 < z < 0.05 selected from Sloan Digital Sky Survey Data Release 7, we detected a broad component of the $H{\alpha}$ line with a Full-Width at Half-Maximum (FWHM) ranging from 1 700 to $19090km\;s^{-1}$ for 142 objects, based on the spectral decomposition and visual inspection. The fraction of the misclassified type 1 AGNs among type 2 AGN sample is ~3.5%, implying that a large number of missing type 1 AGN population may exist. The misclassified type 1 AGNs have relatively low luminosity with a mean broad $H{\alpha}$ luminosity, log $L_{H\alpha}=40.50{\pm}0.35\;erg\;s^{-1}$, while black hole mass of the sample is comparable to that of the local black hole population, with a mean black hole mass, log $M_{BH}=6.94{\pm}0.51\;M_{\odot}$. The mean Eddington ratio of the sample is log $L_{bol}/L_{Edd}=-2.00{\pm}0.40$, indicating that black hole activity is relatively weak, hence, AGN continuum is too weak to change the host galaxy color. We find that the O III lines show significant velocity offsets, presumably due to outflows in the narrow-line region, while the velocity offset of the narrow component of the $H{\alpha}$ line is not prominent, consistent with the ionized gas kinematics of general type 1 AGN population.

Shape Characteristics of Exhaust Plume of Dual-Stage Plasma Thruster using Direct-Current Micro-Hollow Cathode Discharge (직류 마이크로 할로우 음극 방전을 이용한 이단 마이크로 플라즈마 추력기의 배기 플룸의 형상 특성)

  • Ho, Thi Thanh Trang;Shin, Jichul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.54-62
    • /
    • 2016
  • Micro plasma thruster (${\mu}PT$) was studied experimentally with a dual-stage micro-hollow cathode discharge (MHCD) plasma. Electrostatic-like acceleration exhibiting more directional and elongated exhaust plume was achieved by a dual layer MHCD at the total input power less than 10 W with argon flow rate of 40 sccm. V-I characteristic indicated that there was an optimal regime for dual-stage operation where the acceleration voltage across the second stage remained constant. Estimated exhaust plume length showed a similar trend to the analytic estimate of exhaust velocity which scales with an acceleration voltage. ${\mu}PT$ with multiple holes exhibited similar performance with single-hole thruster indicating that higher power loading is possible owing to decreased power through each hole. Boltzmann plot of atomic argon spectral lines showed average electron excitation temperature of about 2.6 eV (~30,170 K) in the exhaust plume.

Visible photochromic energy shift of $WO_{3}$/CdS thin films fabricated by thermal evaporation method (진공증착 법으로 제작한 $WO_{3}$/CdS 박막의 가시광 광 변색의 에너지 전환)

  • Kim, Keun-Mook;Kim, Myung-Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.29-34
    • /
    • 2005
  • Tungsten oxide($WO_{3}$) is suitable to materials for photochromic window in the visible region. The resistivities of CdS, $WO_{3}$, and $WO_{3}$/CdS films prepared by thermal evaporation method were $4.61\times 10\^{3}$, $7.59\times10^{3}$, and $6.29\times10^{3}$ $\omega$ cm. And x-ray diffraction patterns of CdS, $WO_{3}$/CdS films showed a preferred orientation of hexagonal(002), and the monoclinic(020) structure, respectively. The optical transmission were measured that the cut-on wavelength were 510nm, 380nm for CdS and $WO_{3}$ films respectively, and the transmission spectrum of $WO_{3}$/CdS was shifted into the visible region. Photoluminescence(PL) spectra showed the two peaks at 2.8 eV and 3.2 eV for the as-grown sample($WO_{3}$/CdS ($500{\AA}$), but the other sample($WO_{3}$/CdS ($1000{\AA}$)) had a peak energy value of 2.8 eV. The photochromism of $WO_{3}$/CdS films showed that the excitation of electron-hole pairs and subsequent coloration is shifted into visible-light range. And the spectral behavior of coloration turned out to be proportional to the excited electron-hole pairs creation rate of CdS film. This result is interpreted in terms of charge carrier injection from the CdS-layer into the $WO_{3}$ films. We found a value of about 2.8 eV of $WO_{3}$/CdS film which is somewhat higher than peak energy of 2.54 eV using CBD prepared by Bechinger et. al.

  • PDF

SPATIALLY RESOLVED KINEMATICS OF GAS AND STARS IN HIDDEN TYPE 1 AGNS

  • Son, Donghoon;Woo, Jong-Hak;Eun, Da-In;Cho, Hojin;Karouzos, Marios;Park, Songyeon
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.5
    • /
    • pp.103-115
    • /
    • 2020
  • We analyze the spatially resolved kinematics of gas and stars for a sample of ten hidden type 1 AGNs in order to investigate the nature of their central sources and the scaling relation with host galaxy stellar velocity dispersion. We select our sample from a large number of hidden type 1 AGNs, which are identified based on the presence of a broad (full width at half maximum ≳1000 km s-1) component in the Hα line profile and which are frequently mis-classified as type 2 AGNs because AGN continuum and broad emission lines are weak or obscured in the optical spectral range. We used the Blue Channel Spectrograph at the 6.5-m Multiple Mirror Telescope to obtain long-slit data with a spatial scale of 0.3 arcsec pixel-1. We detected broad Hβ lines for only two targets; however, the presence of strong broad Hα lines indicates that the AGNs we selected are all low-luminosity type 1 AGNs. We measured the velocity, velocity dispersion, and flux of stellar continuum and gas emission lines (i.e., Hβ and [O III]) as a function of distance from the center. The spatially resolved gas kinematics traced by Hβ or [O III] are generally similar to the stellar kinematics except for the inner center, where signatures of gas outflows are detected. We compare the luminosity-weighted effective stellar velocity dispersions with the black hole masses and find that our hidden type 1 AGNs, which have relatively low back hole masses, follow the same scaling relation as reverberation-mapped type 1 AGN and more massive inactive galaxies.

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

Effects of the Random Fluctuation in Grating Period on the Characteristics of DFB Lasers (회절격자 주기의 랜덤 변이가 DFB 레이저 특성에 미치는 영향)

  • Han, Jae-Woong;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.76-85
    • /
    • 2000
  • Effects of the random fluctuation in grating half-period have been studied by an effective index transfer matrix method in DFB lasers. The laser facets are assumed to be perfectly antireflection coated, and the period fluctuation is modeled as a Gaussian random variable. The random fluctuation breaks spectral symmetry in both uniform-grating and quarter-wavelength -shifted(QWS) DFB lasers, and decreases the effective coupling coefficient. This leads to increased average mirror loss of ${\pm}$1 modes and reduced stopband width in uniform grating DFB lasers, and degradation in the wavelength accuracy and the single mode stability in QWS-DFB lasers. Threshold gain difference decreases with increasing period fluctuation irrespective of grating coupling coefficient in QWS-DFB lasers, while spatial hole-burning effect is exacerbated or alleviated when the normalized coupling coefficient is lower and higher than 1.5, respectively.

  • PDF