DOI QR코드

DOI QR Code

SPATIALLY RESOLVED KINEMATICS OF GAS AND STARS IN HIDDEN TYPE 1 AGNS

  • Son, Donghoon (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Woo, Jong-Hak (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Eun, Da-In (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Cho, Hojin (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Karouzos, Marios (Nature Astronomy, Springer Nature) ;
  • Park, Songyeon (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
  • Received : 2020.08.03
  • Accepted : 2020.09.24
  • Published : 2020.10.31

Abstract

We analyze the spatially resolved kinematics of gas and stars for a sample of ten hidden type 1 AGNs in order to investigate the nature of their central sources and the scaling relation with host galaxy stellar velocity dispersion. We select our sample from a large number of hidden type 1 AGNs, which are identified based on the presence of a broad (full width at half maximum ≳1000 km s-1) component in the Hα line profile and which are frequently mis-classified as type 2 AGNs because AGN continuum and broad emission lines are weak or obscured in the optical spectral range. We used the Blue Channel Spectrograph at the 6.5-m Multiple Mirror Telescope to obtain long-slit data with a spatial scale of 0.3 arcsec pixel-1. We detected broad Hβ lines for only two targets; however, the presence of strong broad Hα lines indicates that the AGNs we selected are all low-luminosity type 1 AGNs. We measured the velocity, velocity dispersion, and flux of stellar continuum and gas emission lines (i.e., Hβ and [O III]) as a function of distance from the center. The spatially resolved gas kinematics traced by Hβ or [O III] are generally similar to the stellar kinematics except for the inner center, where signatures of gas outflows are detected. We compare the luminosity-weighted effective stellar velocity dispersions with the black hole masses and find that our hidden type 1 AGNs, which have relatively low back hole masses, follow the same scaling relation as reverberation-mapped type 1 AGN and more massive inactive galaxies.

Keywords

References

  1. Bae, H.-J., & Woo, J.-H. 2014, A Census of Gas Outflows in Type 2 Active Galactic Nuclei, ApJ, 795, 30 https://doi.org/10.1088/0004-637X/795/1/30
  2. Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, Classification Parameters for the Emission-line Spectra of Extragalactic Objects, PASP, 93, 5 https://doi.org/10.1086/130766
  3. Bellovary, J. M., Holley-Bockelmann, K., Gultekin, K., et al. 2014, Effects of Inclination on Measuring Velocity Dispersion and Implications for Black Holes, MNRAS, 445, 2667 https://doi.org/10.1093/mnras/stu1958
  4. Bender, R., Saglia, R. P., & Gerhard, O. E. 1994, Line-of-sight Velocity Distributions of Elliptical Galaxies, MNRAS, 269, 785 https://doi.org/10.1093/mnras/269.3.785
  5. Bennert, V. N., Treu, T., Auger, M. W., et al. 2015, A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. III. The $M_{BH}-{\sigma}$ Relation, ApJ, 809, 20 https://doi.org/10.1088/0004-637X/809/1/20
  6. Bentz, M. C., Peterson, B. M., Netzer, H., Pogge, R. W., & Vestergaard, M. 2009, The Radius-luminosity Relationship for Active Galactic Nuclei: The Effect of Host-galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-mapped AGNs, ApJ, 697, 160 https://doi.org/10.1088/0004-637X/697/1/160
  7. Bentz, M. C., Denney, K. D., Grier, C. J., et al. 2013, The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei, ApJ, 767, 149 https://doi.org/10.1088/0004-637X/767/2/149
  8. Caglar, T., Burtscher, L., Brandl, B., et al. 2020, LLAMA: The $M_{BH}-{\sigma}_*$ Relation of the Most Luminous Local AGNs, A&A, 634, A114 https://doi.org/10.1051/0004-6361/201936321
  9. Cappellari, M., 2017, Improving the Full Spectrum Fitting Method: Accurate Convolution with Gauss-Hermite Functions, MNRAS, 466, 798 https://doi.org/10.1093/mnras/stw3020
  10. Cappellari, M., & Emsellem, E. 2004, Parametric Recovery of Line-of-Sight Velocity Distributions from Absorption-Line Spectra of Galaxies via Penalized Likelihood, PASP, 116, 138 https://doi.org/10.1086/381875
  11. Choi, Y.-Y., Han, D.-H., & Kin, S. 2010, Korea Institute for Advanced Study Value-Added Galaxy Catalog, JKAS, 43, 191
  12. Eun, D.-I., Woo, J.-H., & Bae, H.-J. 2017, A Systematic Search for Hidden Type 1 AGN: Gas Kinematics and Scaling Relations, ApJ, 842, 5 https://doi.org/10.3847/1538-4357/aa6daf
  13. Greene, J. E. & Ho, L. C. 2005, Estimating Black Hole Masses in Active Galaxies Using the $H{\alpha}$ Emission Line, ApJ, 630, 122 https://doi.org/10.1086/431897
  14. Greene, J. E., Ho, L. C., & Barth, A. J. 2008, Black Holes in Pseudobulges and Spheroidals: A Change in the Black Hole{Bulge Scaling Relations at Low Mass, ApJ, 688, 159 https://doi.org/10.1086/592078
  15. Greene, J. E., Strader, J., & Ho, L. C. 2019, Intermediate-Mass Black Holes, arXiv:1911.09678
  16. Gultekin, K., Richstone, D. O., Gebhardt, K., et al. 2009, The $M_{BH}-{\sigma}$ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter, ApJ, 698, 198 https://doi.org/10.1088/0004-637X/698/1/198
  17. Jardel, J.R., Gebhardt, K., Shen, J., et al. 2011, Orbit-based Dynamical Models of the Sombrero Galaxy (NGC 4594), ApJ, 739, 21 https://doi.org/10.1088/0004-637X/739/1/21
  18. Kang, D., & Woo, J.-H. 2019, Erratum: Unraveling the Complex Structure of AGN-driven Outflows. III. The Outflow Size-Luminosity Relation, ApJ, 871, 132 https://doi.org/10.3847/1538-4357/aafaf4
  19. Kang, W.-R., Woo, J.-H., Schulze, A., et al. 2013, Calibrating Stellar Velocity Dispersions Based on Spatially Resolved H-band Spectra for Improving the $M_{BH}-{\sigma}_*$ Relation, ApJ, 767, 26 https://doi.org/10.1088/0004-637X/767/1/26
  20. Kaspi, S., Maoz, D., Netzer, H., et al. 2005, The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei, ApJ, 629, 61 https://doi.org/10.1086/431275
  21. Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei, ApJ, 533, 631 https://doi.org/10.1086/308704
  22. Kent, S. M. 1990, The Bar in NGC 4596, AJ, 100, 377 https://doi.org/10.1086/115521
  23. Kormendy, J., & Ho, L. C. 2013, Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies, ARA&A, 51, 511 https://doi.org/10.1146/annurev-astro-082708-101811
  24. Le, H. A. N., Woo, J.-H., Son, D., et al. 2017, Ionized-gas Kinematics Along the Large-scale Radio Jets in Type-2 AGN, ApJ, 851, 8 https://doi.org/10.3847/1538-4357/aa9656
  25. Luo, R., Woo, J.-H., Shin, J., et al. 2019, Unraveling the Complex Structure of AGN-driven Outflows. IV. Comparing AGNs with and without Strong Outflows, ApJ, 874, 99 https://doi.org/10.3847/1538-4357/ab08e6
  26. Markwardt, C. B. 2009, Non-Linear Least-Squares Fitting in IDL with MPFIT, in ASP Conf. Ser., 411, Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohlender, D. Durand, & P. Dowler, 251
  27. McConnell, N. J. & Ma, C.-P. 2013, Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties, ApJ, 764, 184 https://doi.org/10.1088/0004-637X/764/2/184
  28. McGill, K. L., Woo, J.-H., Treu, T., & Malkan, M. A. 2008, Comparing and Calibrating Black Hole Mass Estimators for Distant Active Galactic Nuclei, ApJ, 673, 703 https://doi.org/10.1086/524349
  29. Oh, K., Yi, S. K., Schawinski, K., et al. 2015, A New Catalog of Type 1 AGNs and its Implications on the AGN Unified Model, ApJS, 219, 1 https://doi.org/10.1088/0067-0049/219/1/1
  30. Park, D., Kelly, B., Woo, J.-H. & Treu, T. 2012, Recalibration of the Virial Factor and $M_{BH}-{\sigma}_*$ Relation for Local Active Galaxies, ApJS, 203, 6 https://doi.org/10.1088/0067-0049/203/1/6
  31. Park, D., Woo, J.-H., Bennert, V., et al. 2015, Cosmic Evolution of Black Holes and Spheroids. V. The Relation between Black Hole Mass and Host Galaxy Luminosity for a Sample of 79 Active Galaxies, ApJ, 799, 164 https://doi.org/10.1088/0004-637X/799/2/164
  32. Park, D., Woo, J.-H., Treu, T., et al. 2012b, The Lick AGN Monitoring Project: Recalibrating Single-epoch Virial Black Hole Mass Estimates, ApJ, 747, 30 https://doi.org/10.1088/0004-637X/747/1/30
  33. Peng, C.Y., Ho, L.C., Impey, C.D. & Rix, H.-W. 2002, Detailed Structural Decomposition of Galaxy Images, AJ, 124, 266 https://doi.org/10.1086/340952
  34. Peng, C.Y., Ho, L.C., Impey, C.D. & Rix, H.-W. 2010, Detailed Decomposition of Galaxy Images. II. Beyond Axisymmetric Models, AJ, 139, 2097 https://doi.org/10.1088/0004-6256/139/6/2097
  35. Pinkney, J., Gebhardt, K., Bender, R., et al. 2003, Kinematics of 10 Early-Type Galaxies from Hubble Space Telescope and Ground-based Spectroscopy, ApJ, 596, 903 https://doi.org/10.1086/378118
  36. Rakshit, S. & Woo, J.-H. 2018, A Census of Ionized Gas Outflows in Type 1 AGNs: Gas Outflows in AGNs. V., ApJ, 865, 5 https://doi.org/10.3847/1538-4357/aad9f8
  37. Sanchez-Blazquez, P., Peletier, R. F., Jimenez-Vicente, J., et al. 2006, Medium-resolution Isaac Newton Telescope Library of Empirical Spectra, MNRAS, 371, 703 https://doi.org/10.1111/j.1365-2966.2006.10699.x
  38. Sersic, J. L. 1963, Photometry of Southern Galaxies IX: NGC 1313, BAAA, 6, 41
  39. Valdes, F., Gupta, R., Rose, J. A., et al. 2004, The Indo-US Library of Coude Feed Stellar Spectra, ApJS, 152, 251 https://doi.org/10.1086/386343
  40. Veron-Cetty, M.-P. & Veron, P. 2006, A Catalogue of Quasars and Active Nuclei: 12th Edition, A&A, 455, 773 https://doi.org/10.1051/0004-6361:20065177
  41. Woo, J.-H., Bae, H.-J., Son, D., & Karouzos, M. 2016, The Prevalence of Gas Outflows in Type 2 AGN, ApJ, 817, 108 https://doi.org/10.3847/0004-637X/817/2/108
  42. Woo, J.-H., Cho, H., Gallo, E., et al. 2019, A 10,000-solarmass black hole in the nucleus of a bulgeless dwarf galaxy, Nat. Astron., 3, 755 https://doi.org/10.1038/s41550-019-0790-3
  43. Woo, J.-H., Kim, J., Park, D., et al. 2014, Misclassified Type 1 AGNs in the Local Universe, JKAS, 47, 167
  44. Woo, J.-H., Le, H. A. N., & Karouzos, M. 2018, Calibration and Limitations of the Mg II Line-based Black Hole Masses, ApJ, 859, 138 https://doi.org/10.3847/1538-4357/aabf3e
  45. Woo, J.-H., Schulze, A., Park, D., et al. 2013, Do Quiescent and Active Galaxies Have Different $M_{BH}-{\sigma}_*$ Relations?, ApJ, 772, 49 https://doi.org/10.1088/0004-637X/772/1/49
  46. Woo, J.-H., Son D., and Bae, H.-J. 2017, Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III., ApJ, 839, 120 https://doi.org/10.3847/1538-4357/aa6894
  47. Woo, J.-H., & Urry, C. M. 2002, Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities, ApJ, 579, 530 https://doi.org/10.1086/342878
  48. Woo, J.-H., Yoon, Y., Park, S., et al. 2015, The Black Hole Mass-Stellar Velocity Dispersion Relation of Narrow-Line Seyfert 1 Galaxies, ApJ, 801, 38 https://doi.org/10.1088/0004-637X/801/1/38
  49. Wylezalek, D., Flores, A. M., Zakamska, N. L., et al. 2020, Ionized Gas Outflow Signatures in SDSS-IV MaNGA Active Galactic Nuclei, MNRAS, 492, 4680 https://doi.org/10.1093/mnras/staa062