• Title/Summary/Keyword: Spectral Domain Method

Search Result 324, Processing Time 0.023 seconds

Noise Reduction using Spectral Subtraction in the Discrete Wavelet Transform Domain (이산 웨이브렛 변환영역에서의 스펙트럼 차감법을 이용한 잡음제거)

  • 김현기;이상운;홍재근
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.4
    • /
    • pp.306-315
    • /
    • 2001
  • In noise reduction method from noisy speech for speech recognition in noisy environments, conventional spectral subtraction method has a disadvantage which distinction of noise and speech is difficult, and characteristic of noise can't be estimated accurately. Also, noise reduction method in the wavelet transform domain has a disadvantage which loss of signal is generated in the high frequency domain. In order to compensate theme disadvantage, this paper propose spectral subtraction method in continuous wavelet transform domain which speech and non- speech intervals is distinguished by standard deviation of wavelet coefficient, and signal is divided three scales at different scale. The proposed method extract accurately characteristic of noise in order to apply spectral subtraction method by end detection and band division. The proposed method shows better performance than noise reduction method using conventional spectral subtraction and wavelet transform from viewpoint signal to noise ratio and Itakura-Saito distance by experimental.

  • PDF

A spectral domain analysis of microstrip lines using a residue theorem (유수정리를 이용한 마이크로스트립 선로의 스펙트럼 영역 해석)

  • 문병귀;진경수;박병우
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.8-15
    • /
    • 1998
  • An analysis of the microstripline is started as an assumption of the axial & transveral current distribution. Applying the boundary conditions to the scalar wave equations of a electric & magnetic potential, the two simultaneous coupled integral equations are produced. The electronmagnetic fields in microstrip line can be obtained by solving these two coupled integral equaltion. In general, either a numerical analysis method or a Galerkin method was used to solve them. In this paper, a residue theorem is proposed to solve them. The electromagnetic fields are expressed as integral equations for LSE and LSM mode in the spectral domain. Applying a residue theorem to the Fourier transformed equation and Fourier inverse transformed equation which is necessary for interchanging the space domain and the spectral domain, the electromagnetic fields are expressed as algebraic equations whichare relatively easier to handle. the distributions of the electromagnetic field are shown at the range of -5w/2.leq.x.leq.5w/2, 0.lep.y.leq.4h for z=0. It agrees well with the results of the Quasi-TEM mode analysis.

  • PDF

Time-Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Large Amplitude (대진폭 조화 운동을 하는 잠수구에 의한 비선형 조파문제의 시간영역 해석)

  • Kim, Yong-Jig;Ha, Young-Rok
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.67-74
    • /
    • 2006
  • A high-order spectral/boundary-element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with large amplitude under the free~surface are solved in time-domain. Through the example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown and discussed.

Time Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Forward Speed (전진 동요하는 잠수구에 의한 비선형 조파문제의 시간영역 해석)

  • Ha, Y.R.;Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.75-82
    • /
    • 2010
  • In this study, the topics for free-surface wave simulation, nonlinear hydrodynamic force, and the critical resonance frequency of so-called ${\tau}=U{\omega}/g$=1/4 are discussed. A high-order spectral/boundary element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with forward speed under the free-surface are solved in time domain.

Fast Scattered-Field Calculation using Windowed Green Functions (윈도우 그린함수를 이용한 고속 산란필드 계산)

  • 주세훈;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1122-1130
    • /
    • 2001
  • In this paper, by applying the spectral domain wavelet concept to Green function, a fast spectral domain calculation of scattered fields is proposed to get the solution for the radiation integral. The spectral domain wavelet transform to represent Green function is implemented equivalently in space via the constant-Q windowing technique. The radiation integral can be calculated efficiently in the spectral domain using the windowed Green function expanded by its eigen functions around the observation region. Finally, the same formulation as that of the conventional fast multipole method (FMM) is obtained through the windowed Green function and the spectral domain calculation of the radiation integral.

  • PDF

SPECTRAL LEGENDRE AND CHEBYSHEV APPROXIMATION FOR THE STOKES INTERFACE PROBLEMS

  • HESSARI, PEYMAN;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.109-124
    • /
    • 2017
  • The numerical solution of the Stokes equation with discontinuous viscosity and singular force term is challenging, due to the discontinuity of pressure, non-smoothness of velocity, and coupled discontinuities along interface.In this paper, we give an efficient algorithm to solve this problem by employing spectral Legendre and Chebyshev approximations.First, we present the algorithm for a problem defined in rectangular domain with straight line interface. Then it is generalized to a domain with smooth curve boundary and interface by employing spectral element method. Numerical experiments demonstrate the accuracy and efficiency of our algorithm and its spectral convergence.

Filtering of Filter-Bank Energies for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.273-276
    • /
    • 2004
  • We propose a novel feature processing technique which can provide a cepstral liftering effect in the log-spectral domain. Cepstral liftering aims at the equalization of variance of cepstral coefficients for the distance-based speech recognizer, and as a result, provides the robustness for additive noise and speaker variability. However, in the popular hidden Markov model based framework, cepstral liftering has no effect in recognition performance. We derive a filtering method in log-spectral domain corresponding to the cepstral liftering. The proposed method performs a high-pass filtering based on the decorrelation of filter-bank energies. We show that in noisy speech recognition, the proposed method reduces the error rate by 52.7% to conventional feature.

  • PDF

Bi-modal spectral method for evaluation of along-wind induced fatigue damage

  • Gomathinayagam, S.;Harikrishna, P.;Abraham, A.;Lakshmanan, N.
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.255-270
    • /
    • 2006
  • Several analytical procedures available in literature, for the evaluation of wind induced fatigue damage of structures, either assume the wide band random stress variations as narrow band random process or use correction factors along with narrow band assumption. This paper compares the correction factors obtained using the Rainflow Cycle (RFC) counting of the measured stress time histories on a lamp mast and a lattice tower, with those evaluated using different frequency domain methods available in literature. A Bi-modal spectral method has been formulated by idealising the single spectral moment method into two modes of background and resonant components, as considered in the gust response factor, for the evaluation of fatigue of slender structures subjected to "along-wind vibrations". A closed form approximation for the effective frequency of the background component has been developed. The simplicity and the accuracy of the new method have been illustrated through a case study by simulating stress time histories at the base of an urban light pole for different mean wind speeds. The correction factors obtained by the Bi-modal spectral method have been compared with those obtained from the simulated stress time histories using RFC counting method. The developed Bi-modal method is observed to be a simple and easy to use alternative to detailed time and frequency domain fatigue analyses without considerable computational and experimental efforts.

Dynamic Response Analysis of Tension Leg Platforms in Multi-directional Irregular Waves (Frequency Domain Analysis) (다방향 불규칙파중의 TLP의 동적응답해석 (주파수영역 해석))

  • 구자삼;조효제;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.23-32
    • /
    • 1994
  • A numerical procedure is described for simultaneously predicting the motion and structural responses of tension leg platforms (TLPs) in multi-directional irregular waves. The developed numerical approach is based on a combination of a three dimensional source distribution method, the finite element method for structurally treating the space frame elements and a spectral analysis technique of directional waves. The spectral description for the linear responses of a structure in the frequency domain is sufficient to completely define the responses. This is because both the wave inputs and the responses are stationary Gaussian ran dom process of which the statistical properties in the amplitude domain are well known. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural analysis. The effect of wave directionality has been pointed out on the first order motion, tether forces and structural responses of a TLP in multi-directional irregular waves.

  • PDF

PRECONDITIONED SPECTRAL COLLOCATION METHOD ON CURVED ELEMENT DOMAINS USING THE GORDON-HALL TRANSFORMATION

  • Kim, Sang Dong;Hessari, Peyman;Shin, Byeong-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.595-612
    • /
    • 2014
  • The spectral collocation method for a second order elliptic boundary value problem on a domain ${\Omega}$ with curved boundaries is studied using the Gordon and Hall transformation which enables us to have a transformed elliptic problem and a square domain S = [0, h] ${\times}$ [0, h], h > 0. The preconditioned system of the spectral collocation approximation based on Legendre-Gauss-Lobatto points by the matrix based on piecewise bilinear finite element discretizations is shown to have the high order accuracy of convergence and the efficiency of the finite element preconditioner.