• Title/Summary/Keyword: Spectral Data

Search Result 2,640, Processing Time 0.025 seconds

Multiview-based Spectral Weighted and Low-Rank for Row-sparsity Hyperspectral Unmixing

  • Zhang, Shuaiyang;Hua, Wenshen;Liu, Jie;Li, Gang;Wang, Qianghui
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.431-443
    • /
    • 2021
  • Sparse unmixing has been proven to be an effective method for hyperspectral unmixing. Hyperspectral images contain rich spectral and spatial information. The means to make full use of spectral information, spatial information, and enhanced sparsity constraints are the main research directions to improve the accuracy of sparse unmixing. However, many algorithms only focus on one or two of these factors, because it is difficult to construct an unmixing model that considers all three factors. To address this issue, a novel algorithm called multiview-based spectral weighted and low-rank row-sparsity unmixing is proposed. A multiview data set is generated through spectral partitioning, and then spectral weighting is imposed on it to exploit the abundant spectral information. The row-sparsity approach, which controls the sparsity by the l2,0 norm, outperforms the single-sparsity approach in many scenarios. Many algorithms use convex relaxation methods to solve the l2,0 norm to avoid the NP-hard problem, but this will reduce sparsity and unmixing accuracy. In this paper, a row-hard-threshold function is introduced to solve the l2,0 norm directly, which guarantees the sparsity of the results. The high spatial correlation of hyperspectral images is associated with low column rank; therefore, the low-rank constraint is adopted to utilize spatial information. Experiments with simulated and real data prove that the proposed algorithm can obtain better unmixing results.

EVALUATION OF THE RADIOMETRIC AND SPECTRAL CHARACTERISTICS OF THE CAISS

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.243-246
    • /
    • 2008
  • The Compact Airborne Imaging Spectrometer System (CAISS) was jointly designed and developed as the hyperspectral imaging system by Korea Aerospace Research Institute (KARI) and ELOP inc., Israel. The primary mission of the CAISS is to acquire and provide full contiguous spectral information with high quality spectral and high spatial resolution for advanced applications in the field of remote sensing. The CAISS consists of six physical units; the camera system, the gyro-stabilized mount, the jig, the GPS/INS, the power inverter and distributor, and the operating system. These subsystems shall be tested and verified in the laboratory before the flight. Especially the camera system of the CAISS shall be calibrated and validated with the calibration equipments such as the integrated sphere and spectral lamps. To improve data quality and availability, it is the most important to understand the mechanism of hyperspectral imaging system and the radiometric and spectral characteristics. This paper presents the major characteristics of camera system on the CAISS and summarizes the results of radiometric and spectral experiment during preliminary system verification.

  • PDF

The Design of PC-based Power Spectral Density Analyzer of Heart Rate Variability (PC-기반의 심박변동 팍워스픽트럼밀도 분석기 설계)

  • 김낙환;이응혁;민홍기;홍승홍
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.547-553
    • /
    • 2003
  • In this paper, we designed the PC-based analyzer of the power spectral density that could estimate the heart rate variability from time series data of R-R interval. The power spectral density estimated that it applied the autoregressive model to the measured electrocardiogram during a short period. Also, the characteristics of the designed analyzer are that it could process of the signal filtering, the generation and recomposition of time series and the feature extraction at the same time. Especially the analyzer reconstructed which applied the lowpass filter of the time series composed by the linear interpolation so as to enhance the signal-to-noise feature. We could estimate the power spectral density that confirmed a variety of power peak with low frequency range and high frequency rang of autonomic nerve by the heart rate variability.

Development of PKNU3: A small-format, multi-spectral, aerial photographic system

  • Lee Eun-Khung;Choi Chul-Uong;Suh Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.337-351
    • /
    • 2004
  • Our laboratory originally developed the compact, multi-spectral, automatic aerial photographic system PKNU3 to allow greater flexibility in geological and environmental data collection. We are currently developing the PKNU3 system, which consists of a color-infrared spectral camera capable of simultaneous photography in the visible and near-infrared bands; a thermal infrared camera; two computers, each with an 80-gigabyte memory capacity for storing images; an MPEG board that can compress and transfer data to the computers in real-time; and the capability of using a helicopter platform. Before actual aerial photographic testing of the PKNU3, we experimented with each sensor. We analyzed the lens distortion, the sensitivity of the CCD in each band, and the thermal response of the thermal infrared sensor before the aerial photographing. As of September 2004, the PKNU3 development schedule has reached the second phase of testing. As the result of two aerial photographic tests, R, G, B and IR images were taken simultaneously; and images with an overlap rate of 70% using the automatic 1-s interval data recording time could be obtained by PKNU3. Further study is warranted to enhance the system with the addition of gyroscopic and IMU units. We evaluated the PKNU 3 system as a method of environmental remote sensing by comparing each chlorophyll image derived from PKNU 3 photographs. This appraisement was backed up with existing study that resulted in a modest improvement in the linear fit between the measures of chlorophyll and the RVI, NDVI and SAVI images stem from photographs taken by Duncantech MS 3100 which has same spectral configuration with MS 4000 used in PKNU3 system.

Correlation of response spectral values in Japanese ground motions

  • Jayaram, Nirmal;Baker, Jack W.;Okano, Hajime;Ishida, Hiroshi;McCann, Martin W. Jr.;Mihara, Yoshinori
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.357-376
    • /
    • 2011
  • Ground motion models predict the mean and standard deviation of the logarithm of spectral acceleration, as a function of predictor variables such as earthquake magnitude, distance and site condition. Such models have been developed for a variety of seismic environments throughout the world. Some calculations, such as the Conditional Mean Spectrum calculation, use this information but additionally require knowledge of correlation coefficients between logarithmic spectral acceleration values at multiple periods. Such correlation predictions have, to date, been developed primarily from data recorded in the Western United States from active shallow crustal earthquakes. This paper describes results from a study of spectral acceleration correlations from Japanese earthquake ground motion data that includes both crustal and subduction zone earthquakes. Comparisons are made between estimated correlations for Japanese response spectral ordinates and correlation estimates developed from Western United States ground motion data. The effect of ground motion model, earthquake source mechanism, seismic zone, site conditions, and source to site distance on estimated correlations is evaluated and discussed. Confidence intervals on these correlation estimates are introduced, to aid in identifying statistically significant differences in correlations among the factors considered. Observed general trends in correlation are similar to previous studies, with the exception of correlation of spectral accelerations between orthogonal components, which is seen to be higher here than previously observed. Some differences in correlations between earthquake source zones and earthquake mechanisms are observed, and so tables of correlations coefficients for each specific case are provided.

SPECTROSCOPIC OBSERVATIONS OF GEO-STAT10NARY SATELLITES OVER THE KOREAN PENINSULA (한반도 주변상공의 정지궤도 인공위성 분광관측1)

  • 이동규;김상준;한원용;박준성;민상웅
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.101-108
    • /
    • 2001
  • Low resolution spectroscopic observations of leo-stationary satellites over the Korean peninsula have been carried out at the KyungHee Optical Satellite Observing Facility (KOSOF) with a 40cm telescope. We have observed 9 telecommunication satellites and 1 weather satellite of 6 countries. The obtained spectral data showed that satellites could be classified and grouped with similar basic spectral feature. We divided the 10 satellites into 4 groups based on spectral slop and reflectance. It is suggested that the material types of the satellites can be determined through spectral comparisons with the ground laboratory data. We will continuously observe additional geo-stationary satellites for the accurate classification of spectral features.

  • PDF

Hyperspectral Fluorescence Imaging for Mouse Skin Tumor Detection

  • Kong, Seong G.;Martin, Matthew E.;Vo-Dinh, Tuan
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.770-776
    • /
    • 2006
  • This paper presents a hyperspectral imaging technique based on laser-induced fluorescence for non-invasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect image data in a number of narrow, adjacent spectral bands. Such high-resolution measurement of spectral information reveals contiguous emission spectra at each image pixel useful for the characterization of constituent materials. The hyperspectral image data used in this study are fluorescence images of mouse skin consisting of 21 spectral bands in the visible spectrum of the wavelengths ranging from 440 nm to 640 nm. Fluorescence signal is measured with the use of laser excitation at 337 nm. An acousto-optic tunable filter (AOTF) is used to capture images at 10 nm intervals. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the spatial offsets caused by the refraction differences in AOTF at different wavelengths during the image capture procedure. The unique fluorescence spectral signatures demonstrate a good separation to differentiate malignant tumors from normal tissues for rapid detection of skin cancers without biopsy.

  • PDF

WSGGM-Based Spectral Modeling for Radiation Properties of Combustion Products (회체가스중합모델에 기초한 연소가스의 파장별 복사 성질)

  • Kim, Ook Joong;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.628-636
    • /
    • 1999
  • This work describes the low-resolution spectral modeling of the water vapor, carbon dioxide and their mixtures by applying the weighted-sum-of-gray-gas-gases model (WSGGM) to each narrow band. Proper modeling scheme of gray gas absorption coefficients vs temperature relation is suggested. Comparison between the modeled emissivity calculated from this relation and the 'true' emissivity obtained from the high temperature statistical narrow band parameters is made for a few typical narrow bands. Low resolution spectral intensities from one-dimensional layers are also obtained and examined for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with several gray gases. The results are compared with the narrow band spectral intensities obtained by a narrow band model-based code with Curtis-Godson approximation. Good agreement is found between them. Data bases including optimized modeling parameters and total and low-resolution spectral weighting factors are developed for water vapor, carbon dioxide and their mixtures. This model and obtained data bases, available from the authors' Internet site, can be appropriately applied to any radiative transfer equation solver.

Multi-Temporal Spectral Analysis of Rice Fields in South Korea Using MODIS and RapidEye Satellite Imagery

  • Kim, Hyun Ok;Yeom, Jong Min
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.407-411
    • /
    • 2012
  • Space-borne remote sensing is an effective and inexpensive way to identify crop fields and detect the crop condition. We examined the multi-temporal spectral characteristics of rice fields in South Korea to detect their phenological development and condition. These rice fields are compact, small-scale parcels of land. For the analysis, moderate resolution imaging spectroradiometer (MODIS) and RapidEye images acquired in 2011 were used. The annual spectral tendencies of different crop types could be detected using MODIS data because of its high temporal resolution, despite its relatively low spatial resolution. A comparison between MODIS and RapidEye showed that the spectral characteristics changed with the spatial resolution. The vegetation index (VI) derived from MODIS revealed more moderate values among different land-cover types than the index derived from RapidEye. Additionally, an analysis of various VIs using RapidEye satellite data showed that the VI adopting the red edge band reflected crop conditions better than the traditionally used normalized difference VI.

Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

  • Jo, Yun-A;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.247-256
    • /
    • 2016
  • An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs). We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV) yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV). We also found that peak luminosity is positively correlated with peak energy.