• Title/Summary/Keyword: Specimen area

Search Result 780, Processing Time 0.033 seconds

A Seismic Study for Anisotropy and Engineering Property of Rocks at Boeun Area. (탄성파를 이용한 보은지역 암석의 공학적 성질과 이방성에 관한 연구)

  • 최병렬
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.215-227
    • /
    • 2001
  • The Okchon Formation and the Mesozoic granite of the Boeun, Chungbuk are compared in terms of seismic wave velocities estimated from the field experiment, and seismic wave velocities in 3-D measured from the rock specimen. P-wave velocity for the field data ranges from 861 m/s (Guryongsan-2 Formation) to 2697m/s (Bulguksa Granite). P-wave anisotropy also ranges from 46% (Changri Formation) to 81% (Bulguksa Granite), with an average value of 68.5%. P-wave velocities for the rock specimens from Guryongsan-1, Guryongsan-2, Changri, and Munjuri Formations are greater than 5000m/s. S-wave velocities for those specimens are approximately 3500m/s, which is 3-5 times grater than the ones estimated from the field experimental data. P-wave anisotropy for the specimens from Bulguksa Granite and Guryongsan-1 Formation exceeds 60%, which is compared to 30% for the other specimens. This value is much smaller than average P-wave anisotropy (69.5%) for the field data. It is suggested that velocity difference, associated with the propagation direction, is much greater for the field data than for the specimens.

  • PDF

THE EFFECT OF HYBRID LAYER THICKNESS ON MICROTENSILE BOND STRENGTH OF THREE-STEP AND SELF-ETCHING DENTIN ADHESIVE SYSTEMS (혼성층의 두께가 three-step과 self-etching 상아질 접착제의 미세인장결합강도에 미치는 효과)

  • Lee, Hye-Jung;Park, Jeong-Kil;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.491-497
    • /
    • 2003
  • The purpose of this study was to evaluate the correlation between hybrid layer thickness and bond strength using confocal laser scanning microscope and microtensile bond strength test of two adhesive systems. The dentin surface of human molars. sectioned to remove the enamel from the occlusal surface. Either Scotchbond Multi-Purpose(3M Dental Product, St. Paul, MN, U.S.A) or Clearfil SE Bond (Kuraray, Osaka, Japan) was bonded to the surface. and covered with resin-composite. The resin-bonded teeth were serially sliced perpendicular to the adhesive interface to measure the hybrid layer thickness by confocal laser scanning microscope. The specimen were trimmed to give a bonded cross-sectional surface area of $1\textrm{mm}^2$, then the micro-tensile bone test was performed at a cross head speed of 1.0 mm/min. All fractured surfaces were also observed by stereomicroscope. There was no significant differences in bond strengths the materials(p>0.05). However. the hybrid layers of three-step dentin adhesive system, SM, had significantly thicker than self-etching adhesive system. CS(p<0.05). Pearson's correlation coefficient showed no correlation between hybrid layer thickness and bond strengths(p>0.05). Bond strengths of dentin adhesive systems were not dependent on the thickness of hybrid layer.

Variation of Rock Properties in Acidic Solution and Loading Condition (산성수 침수 및 하중 조건에서의 암석물성변화 연구)

  • Chung, Jae Hong;Park, Seung Hun;Lee, Seung Jun;Yu, Seungwon;Lee, Woo Hee;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.154-165
    • /
    • 2016
  • This paper presents experimental results to investigate the affects of acidic solution under loading condition on rock properties. In the experiment, the variations of various rock properties including effective porosity, thermal conductivity, and etc were investigated with different pHs of solution and magnitudes of loading. The results show that the rock property change was increased with low pH under loading. It was predicted that chemical reaction rate would be increased in low pH. Below the crack initiation stress of the rock specimen, the variation of rock property change was reduced with increased loading. It could be explained with the reduced chemical reaction area by the compressional loading if there is no crack generation.

Liquefaction Characteristic of Pohang Sand Based on Cyclic Triaxial Test (진동삼축시험을 통한 포항 지역 사질토의 액상화 저항 특성 연구)

  • Hwang, Byongyoun;Han, Jin-Tae;Kim, Jongkwan;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.21-32
    • /
    • 2020
  • In this study, series of cyclic triaxial tests and shear velocity measurement were conducted using Pohang sand, which was taken from liquefaction observed area, to verify the liquefaction characteristics of Pohang. The cyclic resistance ratio(CRR) was derived based on the test results. A specimen was reconstituted into 40% and 80% relative density conditions and then a series of cyclic triaxial tests and shear-wave velocity measurement were conducted. As a result, the effect of particle distribution and relative density to liquefaction resistance was verified. The liquefaction resistance of Pohang sand was evaluated by comparing with other liquefaction resistance of sands from previous research. In addition, the liquefaction resistance curve from field observation data was used to verify the reliability of results from this study by measured shear-wave velocity.

Microstructure and Strength Characteristic of Hydropobic Cement Mortar with Silan Admixture (실란계 혼화제가 혼입된 소수성 시멘트 모르타르의 미세구조 및 강도특성)

  • Kim, Younghwan;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.127-134
    • /
    • 2021
  • A hydrophobic emulsion consisting of PMHS and PVA was mixed into a cement mortar to observe changes in cement hydrate and microstructure, and to experimentally evaluate compressive strength and flexural strength. The hydrophobic emulsion was added with metakaolin and PVA fibers, and the stirring speed and sequence were adjusted to prepare a shell-concept hydrophobic emulsion. It was then mixed when mixing mortar to enhance filling of the internal pores and change of the hydrates. It was observed that the mortar mixed with a hydrophobic emulsion was filled with micropores and a coating film was formed on the surface of the hydrates by the emulsion. It was analyzed that the total pore area and porosity of the mortar mixed with the emulsion decreased from 30% to 60% compared to OPC, excluding the 50MK variable, which was extremely reduced and the median pore diameter decreased in some variables. It was also found that the compressive strength of the mortar mixed with emulsion 1% was increased up to 20%, but the strength of the mortar specimen mixed with 2% decreased to 50%.

Post-yielding tension stiffening of reinforced concrete members using an image analysis method with a consideration of steel ratios

  • Lee, Jong-Han;Jung, Chi-Young;Woo, Tae-Ryeon;Cheung, Jin-Hwan
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • When designing reinforced concrete (RC) members, the rebar is assumed to resist all tensile forces, but the resistance of the concrete in the tension area is neglected. However, concrete can also resist tensile forces and increase the tensile stiffness of RC members, which is called the tension stiffening effect (TSE). Therefore, this study assessed the TSE, particularly after yielding of the steel bars and the effects of the steel ratio on the TSE. For this purpose, RC member specimens with steel ratios of 2.87%, 0.99%, and 0.59% were fabricated for uniaxial tensile tests. A vision-based non-contact measurement system was used to measure the behavior of the specimens. The cracks on the specimen at the stabilized cracking stage and the fracture stage were measured with the image analysis method. The results show that the number of cracks increases as the steel ratio increases. The reductions of the limit state and fracture strains were dependent on the ratio of the rebar. As the steel ratio decreased, the strain after yielding of the RC members significantly decreased. Therefore, the overall ductility of the RC member is reduced with decreasing steel ratio. The yielding plateau and ultimate load of the RC members obtained from the proposed equations showed very good agreement with those of the experiments. Finally, the image analysis method was possible to allow flexibility in expand the measurement points and targets to determine the strains and crack widths of the specimens.

Design and Experimental Verification of Blasting Nozzle for Wide Area Surface Treatment based on Incompressible Flow Analysis (비압축성 유동해석에 기초한 대면적 표면처리용 브라스팅 노즐 설계 및 실험적 검증)

  • Kim, Taehyung;Kwak, Jun Gu;Lee, Se Chang;Lee, Sang Ku;Lee, Seung Ho
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.49-56
    • /
    • 2019
  • In this study, a blasting nozzle was designed based on incompressible flow analysis to clean wide surface of parts used in power plant. The outlet side section of the designed nozzle has a wide bore with a linear shape. After the design, the nozzle prototype was made by three dimensional printing, and the cleaning performance test was performed after mounting it on the blasting machine. The wide bore size obtained after the analysis was almost the same as the wide bore size obtained from the surface of the plate specimen after the experiment. Ultimately, it was confirmed that the design of blasting nozzle for wide surface treatment is effective.

Achievements, Problems, and Future Direction of the Quality Control Program for Special Periodic Health Examination Agencies in Republic of Korea

  • Won, Yong Lim;Ko, Kyung Sun;Park, Jae Oh;Choi, Yoon jung;Lee, Hyeji;Sung, Jung-min;Lee, Mi-young
    • Safety and Health at Work
    • /
    • v.10 no.1
    • /
    • pp.125-129
    • /
    • 2019
  • The ultimate goal of the quality control program for special periodic health examination agencies is to diagnose the health condition of a worker correctly, based on accurate examination and analysis skills, leading to protect the worker's health. The quality control program on three areas, chemical analysis for biological monitoring since 1995, and pneumoconiosis, audiometric testing since 1996, has contributed to improve the reliability of occupational health screenings by improving the issues including standardization of testing methods, tools, diagnostic opinions, and reliability of analysis for biological monitoring. It has contributed to improving the reliability of occupational health monitoring by rectifying the following issues associated with previous monitoring: absence of standardized testing methods, testing tools that are not upgraded, mismatching diagnostic opinions, and unreliable results of biological specimen analysis. Nevertheless, there are issues in need of further improvement such as lack of expertise or the use of inappropriate method for health examination, and passive and unwilling participation in the quality control. We suggested solutions to these problems for each area of quality control program. Above all, it is essential to provide active support for health examiners to develop their expertise, while encouraging all the health screening agencies, employers, and workers to develop the desire to improve the system and to maintain the relevance.

A Report on the Taxonomic Characters, Ecological Risk and Weed Risk Assessment of Un-introduced Plants which are Designated in Law by the Ministry of Environment in Korea as Environmentally Harmful Species (I) (환경부지정 한반도 미유입 환경위해우려식물종에 대한 분류학적 특성, 환경위해성 및 잡초위험평가 자료 보고 (I))

  • Yoon, Chang-Young;Park, Kwang-Woo;Jung, Joonhyung;Hyun, JongYoung;Kim, Joo-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.543-558
    • /
    • 2019
  • This study was carried out to apply the taxonomic characters to identify and to provide the habitat circumstances for forty one un-introduced environmentally harmful plants in the Korea which have been designated by Ministry of Environment in 2016. We investigated the dried plant specimen from several herbaria and performed field habitat survey in western coast area of United States including California, Oregon and Washington. We suggest the first result for ecological risk discussion, weed risk assessment, taxonomic characters and classification keys for 8 species with the related species - Carduus acanthoides L. (Asteraceae), Carduus tenuiflorus W. Curtis (Asteraceae), Onopordum acanthium L. (Asteraceae), Chromolaena odorata (L.) R.M. King & H. Rob. (Asteraceae), Hydrocotyle ranunculoides L.f. (Apiaceae), Oenanthe pimpinelloides L. (Apiaceae), Ehrharta erecta Lam. (Poaceae), and Paspalum conjugatum P.J. Bergius (Poaceae).

Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation

  • Sarfarazi, V.;Hajiloo, M.;Ghalam, E. Zarrin;Ebneabbasi, P.
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.565-576
    • /
    • 2020
  • Experimental and discrete element methods were used to investigate the effects of angle of Y shape non-persistent joint on the tensile behaviour of joint's bridge area under brazilian test. concrete samples with diameter of 100 mm and thikness of 40 mm were prepared. Within the specimen, two Y shape non-persistent notches were provided. The large notch lengths were 6 cm, 4 cm and 2 cm. the small notch lengths were 3 cm, 2 cm and 1 cm. The angle of larger notch related to horizontal axis was 0°, 30°, 60°, 90°. Totally, 12 different configuration systems were prepared for Y shape non-persistent joints. Also, 18 models with different Y shape non-persistent notch angle and notch length were prepared in numerical model. The large notch lengths were 6 cm, 4 cm and 2 cm. the small notch lengths were 3 cm, 2 cm and 1 cm. The angle of larger notch related to horizontal axis was 0, 30, 60, 90, 120 and 150. Tensile strength of model materil was 1 MPa. The axial load was applied to the model by rate of 0.02 mm/sec. This testing showed that the failure process was mostly governed by the Y shape non-persistent joint angle and joint length. The tensile strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the tensile behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint length and joint angle. The minimum tensile strength occurs when the angle of larger joint related to horizontal axis was 60°. Also, the maximum compressive strength occurs when the angle of larger joint related to horizontal axis was 90°. The tensile strength was decreased by increasing the notch length. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.