• Title/Summary/Keyword: Specimen Testing

Search Result 1,053, Processing Time 0.028 seconds

The Effects of the Difference of Ultrasonic Damped Rate on the Judgment of Defects (초음파 감쇠율의 차가 결함판정에 주는 영향)

  • Namkoong Chai-Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2005
  • In this study, on automatic ultrasonic testing system is used to detect defects of flawtest specimen. We study the effects of the difference of ultrasonic damped rate of the different materials on the judgment of defects. The results indicate that the difference of sensitivity compensating quantity is 2dB, and the judgment is correct over $90\%$ when a specimen is judged as a defect when it exceeds third grade.

A Study on the Strain Analysis of Plane by Electronic Speckle Pattern Interferometry(ESPI) (전자처리스페클패턴간섭법에 의한 평판의 Strain 해석에 관한 연구)

  • Kim, Koung-Suk;Choi, Hyoung-Chul;Yang, Seung-Pil;Kim, Hyoung-Soo;Chung, Jae-Kang;Kim, Dong-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.101-111
    • /
    • 1994
  • Electronic speckle pattern interferometry(ESPI) using a CW laser, a video system and an image processor were applied to the in-plane displacement measurements. Unlike traditional strain gauges or Moire method, ESPI method requires no special surface preparation or attachments and it can be measured in-plane displacement without any contact and real time. In this experiment, specimen was loaded in paralled with a loa cell. The specimen was plance to which strain gauges was attached. The study provides an example of how ESPI have been used to measure displacement and strain distribution in this specimen. The results measured by ESPI were compared with the data which were measured by strain gauge method in tensile testing.

  • PDF

Development of Steam-Generator UT System and Experimental Verification (증기발생기 전열관 확관부의 초음파 검사장치 및 적용기술개발)

  • Park, Jae-Seok;Hong, Soon-Sin;Park, Chi-Seung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.442-448
    • /
    • 2007
  • The ultrasonic inspection system for the expansion/transition area of steam generator tube was successfully developed. Variety of artificial flaw and real track specimen was tested using the UT system to verify the performance of the system. All artificial flaws of which through-wall depth larger than 10% was clearly detected by UT system. Measurement results of through-wall depth of flaws larger than 20% had good linearity and reproducibility with 3.27 of standard deviation. Results of real crack specimen test suggested that the detection limit of real crack strongly depends on the track morphology. A potential for measurement of PRL(percentage of remaining ligament) was recognized by the real crack specimen test.

A STUDY ON THE FATIGUE AND PHYSICAL PROPERTIES OF TITANIUM USED IN REMOVABLE PARTIAL DENTURES (국소의치용 티나늄의 피로도 및 물리적 성질에 관한 연구)

  • Kim Hak-Sun;Kim Kwang-Nam;Chang Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.2
    • /
    • pp.249-267
    • /
    • 1994
  • The purpose of this study was to compare the fatigue, physical properties, flexibility and surface roughness of titanium used in removable partial dentures with those of a type IV and alloy and a cobalt- chromium alloy. Fatigue testing subjected the test specimen to rapid cycling at a given stress until failure occurred by using a small-sized, electrodynamic type bending fatigue testing machine. The S-N curves for the framework materials were generated. For tensile testing, a tensile bar as described in the ADA Specification No.14 was subjected to tensile loading until failure occurred. Load-displacement curves were generated for 18 gauge round specimen and tapered half round specimen. Then the flexibilities were calculated. The surface roughnesses were compared by analyzer. Through analyses of the data, the following conclusions were obtained. 1. The fatigue property of titanium was higher than that of a type IV gold alloy$(p\leq0.05)$, but there was no significant difference between titanium and a cobalt-chromium alloy $(p\geq0.05)$. 2. The yield strength, the ultimate tensile strength and Victors hardness of titanium were higher than those of a type IV gold alloy but lower than those of a coalt-chromium alloy$(p\leq0.05)$. 3. The percentage of elongation and reduction of area of titanium were the highest $(p\leq0.05)$. 4. The surface roughness of titanium was the greatest$(p\leq0.05)$. 5. The flexibility of titanium was lower than that of a type IV gold alloy but higher than that of a cobalt-chromium alloy$(p\leq0.05)$.

  • PDF

A Newly Designed Miniplate Staple for High Tibial Osteotomy (근위골절술을 위한 Staple 설계)

  • Mun, Mu-Seong;Bae, Dae-Kyung
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.19-22
    • /
    • 1995
  • A biomechanical study was made to demonstrate the superior mechanical performance of the newly designed Miniplate staple to the conventional Coventry staple in high tibial osteotomy(HTO). Using twenty fresh porcine tibiae, the fixational strengh of the two different types of staple in HTO was compared. To minimize the error due to the specimen-to-specimen individuality, the bone mineral density of the tibiae was measured with a bone densitometry (Dual photon absorptionometer, Luner, USA) and those with $0.8\;{\sim}\;1.2\;gm/cm^2$ at the proximal tibia was used in the biomechanical test. Testing was performed on a material testing system (Autogram ET-5, Shimatzu, Japan) with aid of a commercial data processor (IBM 80386/ ASYST). Using two differant loading modes, 'pull-out' and 'push-out', the maximum resistant force required to release the staple from the substrate bone was recorded. In the pull-out test, ten non-osteotomized specimens were used and the staple was pullout by subjecting an axial tension on the head of the staple inserted. While in the pull-out test where ten tibiae osteotomized in the usual way of HTO were used, the staple was not directly loaded. In this testing, as a mimic condition of the natural knee, the distal part of the specimen tibia was pushed horizontally in order for the staple to be pulled out while the proximal tibia was fixed. The pull-out strength of Coventry staple and miniplate staple were found to be $27.88\;{\pm}\;5.12\;kgf$ and $182.47\;{\pm}\;32.75\;kgf$, respectively. The push-out strength of Coventry staple and miniplate staple were $18.40\;{\pm}\;4.47\;kgf$ and $119.95\;{\pm}\;19.06\;kgf$, respectively. The result revealed that miniplate staple had the pull-out/ push-out strength at least fivetimes higher than Coventry staple. Based on the measured data, it was believed that the newly designed miniplate staple could provide much better postoperative fixation in HTO. The postoerative application of long leg casting may not be needed after HTO surgery.

  • PDF

Analytic adherend deformation correction in the new ISO 11003-2 standard: Should it really be applied?

  • Ochsner, A.;Gegner, J.;Gracio, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2004
  • For reliable determination of mechanical characteristics of adhesively bonded joints used e.g. as input data for computer-aided design of complex components, the thick-adherend tensile-shear test according to ISO 11003-2 is the most important material testing method. Although the total displacement of the joint is measured across the polymer layer directly in the overlap zone in order to minimize the influence of the stepped adherends, the substrate deformation must be taken into account within the framework of the evaluation of the shear modulus and the maximum shear strain, at least when high-strength adhesives are applied. In the standard ISO 11003-2 version of 1993, it was prescribed to perform the substrate deformation correction by means of testing a one-piece reference specimen. The authors, however, pointed to the excessive demands on the measuring accuracy of the extensometers connected with this technique in industrial practice and alternatively proposed a numerical deformation analysis of a dummy specimen. This idea of a mathematical correction was included in the revised ISO 11003-2 version of 2001 but in the simplified form of an analytical method based on Hooke's law of elasticity for small strains. In the present work, it is shown that both calculation techniques yield considerably discordant results. As experimental assessment would require high-precision distance determination (e.g. laser extensometer), finite element analyses of the deformation behavior of the bonded joint are performed in order to estimate the accuracy of the obtained substrate deformation corrections. These simulations reveal that the numerical correction technique based on the finite element deformation modeling of the reference specimen leads to considerably more realistic results.

  • PDF

Theoretical Modeling of the Resonant Column Testing with the Viscosity of a Specimen Considered (점성을 고려한 공진주 실험의 이론적 모델링)

  • 조성호;황선근;권병성;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.145-153
    • /
    • 2003
  • The resonant column testing determines the shear modulus and material damping factor dependent on the shear strain magnitude, based on the wave-propagation theory. The determination of the dynamic soil properties requires the theoretical formulation of the dynamic behavior of the resonant column testing system. One of the theoretical formulations is the use of the wave equation for the soil specimen in the resonant column testing device. Wood, Richart and Hall derived the wave equation by assuming the linear elastic soil, and didn't take the material damping into consideration. Hardin incorporated the viscoelastic damping of soil in the wave equation, but he had to assume the material damping factor for the determination of the shear modulus. For the better theoretical formulation of the resonant column testing, this study derived a new wave equation to include the viscosity of soil, and proposed an approach for the solution. Also, in this study, the equation of motion for the testing system, which is another approach of the theoretical formulation of the resonant column testing, was also derived. The equation of motion leads to the better understanding of the resonant column testing, which includes the dynamic magnification factor and the phase angle of the response. For the verification of the proposed equation of motion for the resonant column testing, the finite element analysis was performed for the resonant column testing. The comparison of the dynamic magnification factors and the phase angles far the system response were performed.

Development of a Fatigue Testing System for Micro-Specimens (마이크로시험편용 피로시험기 개발)

  • Kim, Chung-Youb;Sharpe, W.N.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1201-1207
    • /
    • 2010
  • In this study, a fatigue testing system capable of performing load-controlled tension-tension tests for micro-specimens was developed by using an electro-magnetic actuator. Using this system, fatigue testing as well as tensile testing can be performed over a wide range of loading frequencies. Further, a new laser interferometric strain/displacement gage was used during fatigue testing to obtain high-resolution measurements of the cyclic deformation of thin films. Since the testing machine and the displacement gage are stable and show quick responses, the displacement can be measured instantaneously and continuously during fatigue testing, and high-resolution results can be obtained.

A study on direct tensile strength of cement soil (시멘트 혼합토의 인장강도에 관한 연구)

  • Kim, Chang-Woo;Park, Sung-Sik;Choi, Hyun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.584-594
    • /
    • 2010
  • It is difficult to prepare a specimen for directly testing a tensile strength of soils. Therefore, a tensile strength of soils has been measured indirectly. In this study, a mold and sample preparation tool for directly testing a tensile strength of soils has been developed and a tensile strength of weakly cemented sand was measured by using such device. A compressive strength of the cemented sand was also measured and its value was 30 times greater than its tensile strength.

  • PDF

High strain rate test of aluminum alloy with torsional Hopkinson bar (비틂홉킨슨봉을 이용한 알루미늄합금의 고속 전단변형 실험)

  • 전병선;유요한;정동택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.80-83
    • /
    • 1997
  • The split Hopkinson bar technique is the most widely used method to study material behavior at high strain rate deformation. In the present paper, a torsional Hopkinson bar for testing thin-walled tube specimens at high strain rate is described. From the experiment of aluminum 6061, dynamic stress-strain relationship can be obtained and dynamic result is compared with static one.

  • PDF