• Title/Summary/Keyword: Specified safety factor

Search Result 61, Processing Time 0.025 seconds

Analysis of Deterioration Characteristics for Connection Factor used in Grounding System (접지시스템에 사용되는 접속요소의 열화특성 분석)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.9-13
    • /
    • 2015
  • This paper describes the analysis of deterioration characteristics for connection factor used in grounding system. The connection method of grounding system is specified in IEC standard. In order to analyze the deterioration characteristics for connection factor, deterioration test was carried out when the connection factor was buried in salt water and underground. The test connection factors were C-type sleeve, clamp, and exothermic welding. As a consequence, most of the connection factor was corroded, and the electrical resistance decreased after deterioration. The analytical results can be used to establish the safety of grounding system.

Application of inverse reliability method to estimation of cable safety factors of long span suspension bridges

  • Cheng, Jin;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.195-207
    • /
    • 2006
  • An efficient and accurate algorithm is proposed to estimate cable safety factor of suspension bridges satisfying prescribed reliability levels. Uncertainties in the structure and load parameters are incorporated. The proposed algorithm integrates the concepts of the inverse reliability method and deterministic method for assessing cable safety factors of suspension bridges. The unique feature of the proposed method is that it offers a tool for cable safety assessment of suspension bridges, when the reliability level is specified as a target to be satisfied by the designer. After the accuracy and efficiency of the method are demonstrated through two numerical examples, the method is used to estimate cable safety factors of suspension bridges with span length ranging from 2000 to 5000 m. The results show that the deterministic method overestimates cable safety factor of suspension bridges because of neglecting the parameter uncertainty effects. The actual cable safety factor of suspension bridges should be estimated based on the proposed method.

Analysis of Deterioration Characteristics for Connection Factor according to Connection Method of Grounding System (접지시스템의 접속방식에 따른 접속요소의 열화특성 분석)

  • Gil, Hyoung-Jun;Kim, Hyang-Kon;Kim, Dong-Ook;Kim, Dong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2126-2127
    • /
    • 2011
  • This paper describes the analysis of deterioration characteristics for connection factor according to connection method of grounding system. The connection method of grounding system is specified in IEC standard. In order to analyze the deterioration characteristics for connection factor, deterioration test was carried out when the connection factor was buried in salt water and underground. The test connection factors were C-type sleeve, clamp, and exothermic welding. As a consequence, most of the connection factor was corroded, and the electrical resistance decreased after deterioration. The analytical results can be used to establish the safety of grounding system.

  • PDF

Application of inverse reliability method to estimation of flutter safety factors of suspension bridges

  • Cheng, Jin;Dong, Fenghui
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.249-265
    • /
    • 2017
  • An efficient and accurate algorithm is proposed to estimate flutter safety factor of suspension bridges satisfying prescribed reliability levels. Uncertainties which arise from the basic wind speed at the bridge deck location, critical flutter velocity, the wind conversion factor from a scaled model to the prototype structure and the gust speed factor are incorporated. The proposed algorithm integrates the concepts of the inverse reliability method and the calculation method of the critical flutter velocity of suspension bridges. The unique feature of the proposed method is that it offers a tool for flutter safety assessment of suspension bridges, when the reliability level is specified as a target to be satisfied by the designer. Accuracy and efficiency of this method with reference to three example suspension bridges is studied and numerical results validate its superiority over conventional deterministic method. Finally, the effects of various parameters on the flutter safety factor of suspension bridges are also investigated.

A Study on the Safety Culture Index Measurement of Pilot Training School (조종사 양성교육기관의 안전문화지수 측정에 관한 연구)

  • Han, Kyoung-Keun;Kim, Young-Suk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • The importance of safety culture improvement and transformation has highlighted since an organization's safety culture can be the causal factor of the accident. Every designated aviation training school have to manage their own SMS and will comply with the regulations specified in article 49, Korean Aviation law. In related regulations, it is specified the safety culture status and problems of an organizations must be accessed and improved. On this study, safety culture index of designated aviation training school has measured using abbreviated CASS developed by KTSA. Results from the statistical analysis, the overall safety culture average found as 3.711. Among the subindex, mean of 'Employee Empowerment' appeared the most high(3.980) and 'Reward System' appeared the most low(3.309). Service providers are able to apply the intervention strategy on the basis of the results of these measurements. The weak part of Safety Culture might be improved and this will lead the better organizational culture.

Reliability-Based Load and Resistance Factor Design (신뢰성 이론에 의한 하중 및 저항계수 설계)

  • Son, Seung Yo;Lee, Jong Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.1-12
    • /
    • 1987
  • The Advanced First Order Second Moment(AFOSM) method is commonly used to determine partial safety factors in the development of probability based LRFD code. However, design format using load and resistance factors based on this method may result in different reliability levels from specified ones. Reliability-Conditioned(RC) method recently proposed by Ayyub et al. gives partial safety factors which do not affect the target reliability level as specified. However, this method has some numerical difficulties and the procedure is not consistent. The proposed RC/AFOSM combined method has not only numerical consistency, but also results in almost constant partial safety factors with respect to various design conditions, and the resulting reliability levels are very close to specified ones.

  • PDF

Developing the Vulnerability Factor Structure Affecting Injuries and Health Problems Among Migrant Seafood Processing Industry Workers

  • Jiaranai, Itchaya;Sansakorn, Preeda;Mahaboon, Junjira
    • Safety and Health at Work
    • /
    • v.13 no.2
    • /
    • pp.170-179
    • /
    • 2022
  • Background: The vulnerability of international migrant workers is on the rise, affecting the frequency of occupational accidents at workplaces worldwide. If migrant workers are managed in the same way as native workers, the consequences on safety assurance and risk management will be significant. This study aimed to develop the vulnerability factor model for migrant workers in seafood processing industries because of significant risk-laden labor of Thailand, which could be a solution to control the risk effectively. Methods: A total of 569 migrant workers were surveyed (432 Burmese and 137 Cambodian), beginning with 40 initial vulnerability factors identified in the questionnaire established from experts. The data were analyzed through descriptive analysis; exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were used to ascertain the model. Results: The result of content validity >0.67 and the Cronbach's alpha of 0.957 specified the high reliability of 40 factors. The EFA indicated a total variance of 65.49%. The final CFA validated the model and had an empirical fitting; chi-square = 85.34, Adjust Goodness-of-Fit Index = 0.96, and root mean square error of approximation = 0.016. The structure concluded with three dimensions and 18 factors. Dimension 1 of the structure, "multicultural safety operation," contained 12 factors; Dimension 2, "wellbeing," contained four factors; and Dimension 3, "communication technology," contained two factors. Conclusion: The vulnerability factor structure developed in this study included three dimensions and 18 factors that were significantly empirical. The knowledge enhanced safety management in the context of vulnerability factor structure for migrant workers at the workplace.

Comparison of Design Strands for Safety Factor of Offshore Wind Turbine Foundation (해상 풍력발전기 기초의 안전율에 관한 설계기준 분석 연구)

  • Jang, Hwa Sup;Kim, Ho Sun;Lee, Kyoung Woo;Kim, Mann Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.149-152
    • /
    • 2012
  • This study is carried out to analyze the design method and safety rate degree for IEC 61400-3, DNV-OS-J101, GL Wind, EUROCODE, AASHTO and domestic design standard used for offshore wind turbine foundation design. The findings will provide a design parameter for domestic offshore wind turbine foundation design. The design of the steel Support Structure of an offshore wind turbine can be based on either the Allowable Stress Design(ASD) approach or the Load and Resistance Factor Design(LRFD) approach. The design principles with the use of LRFD method are described with various limit states. A limit state is a condition beyond which a structure or part of a structure exceeds a specified design requirement. Design by the LRFD method is a design method by which the target component safety level is obtained by applying load and resistance factors to characteristic reference values of loads (load effects)and structural resistance. When the strength design of the steel Support Structure is based on the ASD approach, the design acceptance criteria are to be expressed in terms of appropriate basic allowable stresses in accordance with the requirements specified. After comparison an economics domestic offshore wind turbine foundation standard will be developed.

A Three Dimensional Study on the Probability of Slope Failure(II) (사면(斜面)의 삼차원(三次元) 파괴확률(破壞確率)에 관(關)한 연구(硏究)(II))

  • Kim, Young-Su;Tcha, Hong-Jun;Jung, Sung-Kwan
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.53-63
    • /
    • 1983
  • The probability of failure is used to analyze the reliability of three dimensional slope failure, instead of conventional factor of safety. The strength parameters are assumed to be normal variated and beta variated. These are interval estimated under the specified confidence level and maximum likelihood estimation. The pseudonormal and beta random variables are generated using the uniform probability transformation method according to central limit theorem and rejection method. By means of a Monte-Carlo Simulation, the probability of failure is defined as; Pf=M/N N : Total number of trials M : Total number of failures Some of the conclusions derived from the case study include; 1. Three dimensional factors of safety are generally much higher than 2-D factors of safety. However situations appear to exist where the 3-D factor of safety can be lower than the 2-D factor of safety. 2. The F3/F2 ratio appears to be quite sensitive to c and ${\phi}$ and to the shape of the 3-D shear surface and the slope but not to be to the unit weight of soil. 3. In cases that strength parameters are assumed to be normal variated and beta variated, the relationships between safety factor and the probability of failure are fairly consistent, regardless of the shape of the 3-D shear surface and the slope. 4. As the c-value is increased, the probability of failure for the same safety factor is increased and as the ${\phi}-value$ is increased, the probability of failure for the same safety factor is decreased.

  • PDF

Slope Stability Analysis of Unsaturated Soil Slopes Due to Rainfall Infiltration (강우침투에 따른 불포화 토사사면의 안정해석)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.51-64
    • /
    • 2000
  • This paper presents a procedure of calculating a safety factor of the unsaturated slope suffering from the rainfall infiltration. The process of infiltration into a slope due to rainfall and its effect on the behavior of the soil slope are examined by using a two dimensional finite element flow-deformation coupled analysis. A factor of safety is calculated at various elapsed times after the commencement of rainfall as in the following procedure. First, stresses are estimated at each Gaussian point from the coupled finite element analysis. Then, the global stress smoothing method is applied to get a continuous stress field. Based on this stress field, a factor of safety is calculated for a specified slip surface by a stress integration scheme. Then, a search strategy is used to find out a critical slip surface which is associated with the minimum factor of safety. Some numerical examples are analyzed in order to study the effect of hydraulic conductivity on the slope stability during rain-induced infiltration. According to the results, local failure zone can be formed near the slope surface due to inhomogeneous distribution of hydraulic conductivity If the failure zone is once formed, then the region extends until a large amount of slide activates. Therefore the local failure can be neglected no longer in the stability analysis.

  • PDF