• Title/Summary/Keyword: Specific surface are

Search Result 1,410, Processing Time 0.029 seconds

Interpretation of Electrical Resistivity Tomogram with Contents of Clay Minerals for the Land Creeping Area (점토광물 함유량을 고려한 땅밀림 산사태 지역의 전기비저항 자료의 해석)

  • Kim, Jeong-In;Kim, Ji-Soo;Lee, Sun-Joong;Cho, Kyoung-Seo;Kim, Jong-Woo
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • Clay mineral content of weathered zone is a key parameter for landslide studies. Electrical resistivity tomography is usually performed to delineate the geometry of complex landslides and to identify the sliding surface. In clay-bearing weathered zone, parallel resistivity Archie equation is employed to investigate the effect of conductivity added (resistivity reduced) by clay minerals of kaolinite and montmorillonite, which is dependent on their specific surface area and cation exchange capacities (CEC). A decrease of overall resistivity and apparent formation factor is observed with increasing pore-water resistivity, significantly in montmorillonite. Formation factor is found decreased with increasing porosity and decreasing cementation factor. Parallel Archie equation was applied to the electrical resistivity data from the test area (Sinjindo-ri, Taean-gun, Chungcheongnam-do, Korea) which experienced land creeping in the year of 2014. A panel test with varying clay-mineral contents provides the best fit section when the theoretical section constructed with the assumed contents approaches the field section, from which the clay-mineral content of the weathered zone is estimated to be approximately 10%. Resistivity interpretation schemes including the clay mineral contents for land creeping studies explored in this paper can be challenged more when porosity, saturation, and pore-water resistivity are provided and they are included in the numerical resistivity modeling.

Preparation of Vinyl Waste-derived Separator and Enhancement of Electrochemical Performance using Electrospinning and Plasma Treatment (전기방사와 산소 플라즈마 처리를 활용한 폐비닐 기반의 분리막 합성 및 전기화학적 성능 향상 연구)

  • Chan-Gyo Kim;Yoon-Ho Ra;Suk Jekal;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, vinyl waste, which is the cause of environmental pollution, is recycled via an electrospinning method and applied as a separator that can be employed for energy storage devices. In detail, vinyl wastes are dissolved in a solution containing p-xylene and cyclohexanone, followed by electrospinning to obtain a vinyl waste-derived separator(VWS), and then the hydrophilic functional groups on the surface of VWS are introduced using a plasma treatment to improve wettability. Scanning electron microscopy analysis have verified that the shape and thickness of as-spun VWS vary depending on the concentration of vinyl waste. The surface hydrophility of VWS is modified by plasma treatment with applied powers ranging from 80 to 120W. The lowest contact angle is observed when the 100W power is applied to VWS(VWS-100W). In electrochemical analysis, the VWS-100W-based supercapacitor device shows the highest specific capacitance of 57.9 F g-1. This is ascribed to the high porosity achieved by electrospinning as well as the introduction of hydrophilic functional groups by the oxygen plasma treatment. In conclusion, vinyl waste is successfully recycled into separators for energy storage devices, suggesting a new way to reduce environmental pollution.

Elementary preservice teachers' conceptions of a generating line and exploration of teaching methods (모선에 대한 초등 예비교사의 인식과 지도 방안 탐색)

  • Jinam Hwang
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.451-466
    • /
    • 2024
  • This study investigated elementary preservice teachers' conceptions of a generating line, an ambiguous concept in school mathematics. The preservice teachers' conceptions of a generating line can be classified into four types: (a) only cones have generating lines, (b) only cones and cylinders have generating lines, (c) solids of revolution have generating lines, (d) straight lines on the lateral surface are generating lines. 22.1% of all preservice teachers believed that only cones have generating lines, and most of them followed the definition of a generating line presented in elementary mathematics textbooks. The conception that only cones and cylinders have generating lines was the least investigated. However, since there were instances where generating lines were defined with the use of a director curve, it became important to explore topics more thoroughly, such as generating lines of a truncated cone. 27.9% of all preservice teachers believed that solids of revolution have generating lines. This conception was marked by differing opinions on whether spheres also have generating lines. The conception that straight lines on the lateral surface are generating lines was the most frequently investigated. This conception differs from the traditional view in school mathematics because it suggests using a director curve to define generating lines. Based on these analysis results, the researcher developed specific teaching methods that considered both subject matter knowledge and pedagogical content knowledge for preservice teachers. In addition, the researcher proposed a consensus definition of a generating line in mathematics education.

Prioritization of Species Selection Criteria for Urban Fine Dust Reduction Planting (도시 미세먼지 저감 식재를 위한 수종 선정 기준의 우선순위 도출)

  • Cho, Dong-Gil
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.472-480
    • /
    • 2019
  • Selection of the plant material for planting to reduce fine dust should comprehensively consider the visual characteristics, such as the shape and texture of the plant leaves and form of bark, which affect the adsorption function of the plant. However, previous studies on reduction of fine dust through plants have focused on the absorption function rather than the adsorption function of plants and on foliage plants, which are indoor plants, rather than the outdoor plants. In particular, the criterion for selection of fine dust reduction species is not specific, so research on the selection criteria for plant materials for fine dust reduction in urban areas is needed. The purpose of this study is to identify the priorities of eight indicators that affect the fine dust reduction by using the fuzzy multi-criteria decision-making model (MCDM) and establish the tree selection criteria for the urban planting to reduce fine dust. For the purpose, we conducted a questionnaire survey of those who majored in fine dust-related academic fields and those with experience of researching fine dust. A result of the survey showed that the area of leaf and the tree species received the highest score as the factors that affect the fine dust reduction. They were followed by the surface roughness of leaves, tree height, growth rate, complexity of leaves, edge shape of leaves, and bark feature in that order. When selecting the species that have leaves with the coarse surface, it is better to select the trees with wooly, glossy, and waxy layers on the leaves. When considering the shape of the leaves, it is better to select the two-type or three-type leaves and palm-shaped leaves than the single-type leaves and to select the serrated leaves than the smooth edged leaves to increase the surface area for adsorbing fine dust in the air on the surface of the leaves. When considering the characteristics of the bark, it is better to select trees that have cork layers or show or are likely to show the bark loosening or cracks than to select those with lenticel or patterned barks. This study is significant in that it presents the priorities of the selection criteria of plant material based on the visual characteristics that affect the adsorption of fine dust for the planning of planting to reduce fine dust in the urban area. The results of this study can be used as basic data for the selection of trees for plantation planning in the urban area.

Ecosysteme de I′Etang de Berre (Mediterranee nord-occidentale) : Caracteres Generales Physiques, Chimiques et Biologiques

  • Kim, Ki-Tai
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Climatological, hydrological and planktonical research studies, measurements of primary production and photosynthetic efficiency from December 1976 to December 1978 have been carried out in two brackish lakes: Lake Etang de Berre and Lake Etang de Vaine located in the French Mediterranean coast, in the region of Carry-le-Rouet located on the north-west Mediterranean near Marseilles, and in fresh water inflows from 4 Rivers (Touloubre, Durance, Arc, Durancole) to Lake Etang de Berre. Physico-chemical parameters were measured for this study: water temperature, salinity, density, pH, alcalinity, dissolved oxygen (% saturation), phosphate, nitrate, nitrite, silicate etc. Diverse biological parameters were also studied: photosynthetic pigments, phaeopigments, specific composition and biomass of phytoplankton, primary pelagic production etc. Climatical factors were studied: air-temperature, solar-radiation, evaporation, direction (including strength) of winds, precipitation and freshwater volume of the four rivers. The changes in Lake ‘Etang de Berre’ ecosystem depend on the quality of the water in the Durance River, and on the effects of seawater near the entrance of the Caronte Canal. The water quality of the lake varies horizontally and vertically as a result of atmospheric phenomena, maritime currents and tides. The distribution of water temperatures is generally heterogeneous. Southeasterly winds and the Northeasterly Mistral wind are important in the origins of circulated and mixed water masses. These winds are both frequent and strong. They have, as a result, a great effect on the water environment of Lake Etang de Berre. In theory, the annual precipitation in this region is well over eight times the water mass of the lake. The water of the Durance River flows into Lake Etang de Berre through the EDF Canal, amounting to 90% of the precipitation. However, reduction of rainfall in dry seasons has a serious effect on the hydrological characteristics of the lake. The temperature in the winter is partially caused by the low temperature of fresh water, particularly that of the Durance River. The hydrological season of fresh and brackish water is about one month ahead of the hydrological season of sea water in its vicinity. The salinity of Lake Etang de Berre runs approximately 3$\textperthousand$, except at lower levels and near the entrance to the Caronte Canal. However, when the volume of the Durance River water is reduced in the summer and fall, the salinity rises to 15$\textperthousand$. In the lake, the ratio of fresh water to sea water is six to one (6:1). The large quantities of seston conveyed by rivers, particularly the Durance diversion, strongly reduce the transparency in the brackish waters. Although the amount of sunshine is also notable, transparency is slight because of the large amount of seston, carried chiefly by Tripton in the fresh water of the Durance River. Therefore, photosynthesis generally occurs only in the surface layer. The transparency progressively increases from freshwater to open seawater, as mineral particles sink to the bottom (about 1.7kg $m^{-2}a^{-1}$ on the average in brackish lakes). The concentration of dissolved oxygen and the rate of oxygen saturation in seawater (Carry-le-Rouet) ranged from 5.0 to 6.0 $m\ell$ㆍ.$1^{-1}$, and from 95 to 105%, respectively. The amount of dissolved oxygen in Etang de Berre oscillated between 2.9 and 268.3%. The monographs of phosphate, nitrate, nitrite and silicate were published as a part of a study on the ecology of phytoplankton in these environments. Horizontal and vertical distributions of these nutriments were studied in detail. The recent diversion of the Durance River into Lake Etang de Berre has effected a fundamental change in this formerly marine environment, which has had a great impact in its plankton populations. A total of 182 taxa were identified, including 111 Bacillariophyceae, 44 Chlorophyceae, and 15 Cyanophyceae. The most abundant species are small freshwater algae, mainly Chlorophyceae. The average density is about $10^{8}$ cells $1^{-1}$ in Lake Etang de Berre, and about double that amount in Lake Etang de Vaine. Differences in phytoplankton abundance and composition at the various stations or at various depths are slight. Cell biovolume V (equivalent to true biomass), plasma volume VP (‘useful’ biomass) and, simultaneously. the cell surface area S and S/V ratio through the measurement of cell dimensions were computed as the parameters of phytoplankton productivity and metabolism. Pigment concentrations are generally very high on account of phytoplankton blooms by Cyanophyceae, Chlorophyceae and Cryptophyceae. On the other hand, in freshwaters and marine waters, pigment concentrations are comparatively low and stable, showing slight annual variation. The variations of ATP concentration were closely related to those of chlorophyll a and phytoplankton blooms only in marine waters. The carbon uptake rates ranged between 38 and 1091 mg$Cm^{-2}d^{-1}$, with an average surface value of 256 mg; water-column carbon-uptake rates ranged between 240 and 2310 mg$Cm^{-2}d^{-1}$, with an average of 810, representing 290 mg$Cm^{-2}$, per year 45 000 tons per year of photosynthetized carbon for the whole lake. Gross photosynthetic production measured by the method of Ryther was studied over a 2-year period. The values obtained from marine water(Carry-le-Rouet) ranged from 23 to 2 337 mg$Cm^{-2}d^{-1}$, with a weighted average of 319, representing about 110 gCm$^{-2}$ per year. The values in brakish water (Etang de Berre) ranged from 14 to 1778 mg$Cm^{-2}d^{-1}$, with a weighted average of 682, representing 250 mg$Cm^{-2}$ per year and 38 400 tons per year of photosynthesized carbon for the whole lake.

A Study on the adequate Aggregate Selection of the Exposed Aggregate PCC Pavements (골재노출 콘크리트포장의 적정 골재 선정에 대한 연구)

  • Kim, Young-Kyu;Chae, Sung-Wook;Lee, Seung-Woo;Yoo, Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.117-127
    • /
    • 2007
  • The exposed aggregate PCC(EAP) pavements have been successfully used in Europe and Japan as low-noise pavements. Coarse aggregate are exposed on the pavement surface texture of EAP by removing mortar of surface. The pavement surface texture should maintain not only low-noise characteristic but also adequate skid resistance level during the performance period. Skid resistance decreased with wearing and polishing of tire and pavement surface due to the repetition of tire-pavement contact. Since the tires mainly contact the exposed coarse aggregate, the shape and rock type of coarse aggregate significantly influence wearing and polishing of EAP pavements. The test for resistance to abrasion coarse aggregate by use of the Los Angeles machine(KS F 2508) and the method of test for resistance to abrasion coarse aggregate by use of the Accelerated Polishing Machine(ASTM D 3319-90) are generally used to evaluate polishing characteristics of aggregate. In this study, polishing of coarse aggregate of different five rock types were evaluated by KS F 2508(LA abrasion test) and ASTM D 3319-90(PSV method). The results of LA abrasion test and PSV method were contrary to each other. Since LA abrasion test is estimated the quantity of abrasion by the impact of aggregate, it may not be adequate to evaluate the polishing of aggregate by the repetition of tire. In the case of PSV method, the resistance of polishing is estimated the skid resistance variation of polished aggregate after repetition of tire. The PSV method is adequate for the evaluation on polishing of coarse aggregate. From the test results of PSV method, it was founded that rock type, specific gravity, coarse aggregate angularity, flat or elongated particles in coarse aggregate are significant to the resistance characteristic of coarse aggregate.

  • PDF

Geoscientific land management planning in salt-affected areas* (염기화된 지역에서의 지구과학적 토지 관리 계획)

  • Abbott, Simon;Chadwick, David;Street, Greg
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.98-109
    • /
    • 2007
  • Over the last twenty years, farmers in Western Australia have begun to change land management practices to minimise the effects of salinity to agricultural land. A farm plan is often used as a guide to implement changes. Most plans are based on minimal data and an understanding of only surface water flow. Thus farm plans do not effectively address the processes that lead to land salinisation. A project at Broomehill in the south-west of Western Australia applied an approach using a large suite of geospatial data that measured surface and subsurface characteristics of the regolith. In addition, other data were acquired, such as information about the climate and the agricultural history. Fundamental to the approach was the collection of airborne geophysical data over the study area. This included radiometric data reflecting soils, magnetic data reflecting bedrock geology, and SALTMAP electromagnetic data reflecting regolith thickness and conductivity. When interpreted, these datasets added paddock-scale information of geology and hydrogeology to the other datasets, in order to make on-farm and in-paddock decisions relating directly to the mechanisms driving the salinising process. The location and design of surface-water management structures such as grade banks and seepage interceptor banks was significantly influenced by the information derived from the airborne geophysical data. To evaluate the effectiveness ofthis planning., one whole-farm plan has been monitored by the Department of Agriculture and the farmer since 1996. The implemented plan shows a positive cost-benefit ratio, and the farm is now in the top 5% of farms in its regional productivity benchmarking group. The main influence of the airborne geophysical data on the farm plan was on the location of earthworks and revegetation proposals. There had to be a hydrological or hydrogeological justification, based on the site-specific data, for any infrastructure proposal. This approach reduced the spatial density of proposed works compared to other farm plans not guided by site-specific hydrogeological information.

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

Air-sparging Technology for Remediation of Specific Aquifer Layer Using Surfactant (계면활성제를 이용한 오염대수층의 선택적 폭기기술)

  • Kim, Heon-Ki;Song, Young-Su;Kwon, Han-Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.23-30
    • /
    • 2008
  • Air sparging technique has been used for remediation of VOC(volatile organic compound)-contaminated aquifer. The aim of this study was to develop an innovative air sparging technique that enhances the efficiency of air intrusion into a specific horizontal layer of aquifer where the contaminants exist with the help of water-soluble surfactant. A twodimensional physical box model, packed with homogeneous sand, was used for simulating the aquifer in this study. Aqueous solution of anionic surfactant (100 mg/L, sodium dodecylbenzene sulfonate) was used to suppress the surface tension of groundwater. Three sets of experiments were conducted: air sparging experiment without surfactant application, air sparging experiments for box model where the surfactant solution was applied right above the air injection point, and air sparging experiments with surfactant solution layer formed in the middle of the box. It was found that the sparging influence zone was expanded up to five times of that formed by sparging without surfactant application. The size of sparging influence zone was more sensitive to the air flow (injection) rate with surfactant application than that without surfactant. More importantly, injection of air into the target aquifer layer was successful with surfactant application. Findings in this study are expected to provide more options for designing remediation processes using air sparging.

Assessment of Discoidal Polymeric Nanoconstructs as a Drug Carrier (약물 운반체로서의 폴리머 디스크 나노 입자에 대한 평가)

  • BAE, J.Y.;OH, E.S.;AHN, H.J.;KEY, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Chemotherapy, radiation therapy, and surgery are major methods to treat cancer. However, current cancer treatments report severe side effects and high recurrences. Recent studies about engineering nanoparticles as a drug carrier suggest possibilities in terms of specific targeting and spatiotemporal release of drugs. While many nanoparticles demonstrate lower toxicity and better targeting results than free drugs, they still need to improve their performance dramatically in terms of targeting accuracy, immune responses, and non-specific accumulation at organs. One possible way to overcome the challenges is to make precisely controlled nanoparticles with respect to size, shape, surface properties, and mechanical stiffness. Here, we demonstrate $500{\times}200nm$ discoidal polymeric nanoconstructs (DPNs) as a drug delivery carrier. DPNs were prepared by using a top-down fabrication method that we previously reported to control shape as well as size. Moreover, DPNs have multiple payloads, poly lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), lipid-Rhodamine B dye (RhB) and Salinomycin. In this study, we demonstrated a potential of DPNs as a drug carrier to treat cancer.