• Title/Summary/Keyword: Specific surface are

Search Result 1,390, Processing Time 0.035 seconds

A Study on the Surface Integrity of Grinding of Ceramics

  • Lee, Jongchan;Whan Chio;Woojin Sim;Yongky Kang;Eunha Hwang;Lee, Taewon;Sangbaek Ha;Kim, Sunghun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.90-96
    • /
    • 2001
  • Experimental investigations were carried out to find the characteristics of grinding of ceramics. Grinding mechanisms of ceramics were inspected through the microscopic examination. It has been found that the specific grinding energy of ceramics is relatively low as compared to that of steels. The specific grinding energy affects the surface roughness and the residual stress of ground surface. the experimental results indicate that the rougher surface finish and higher compressive residual stress are obtained at lower specific grinding energy. The surface roughness and the residual stress of the ground surface have significant effects on the strength of ground piece of ceramics.

  • PDF

A Study on the Surface Intigrity of Grinding of Ceramics (세라믹연삭에 있어서 표면품위에 관한 연구)

  • Ha, Sang-Baek;Lim, Jong-Go;Kim, Sung-Huen;Choi, Whan;Lee, Jong-Chan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.337-342
    • /
    • 2000
  • Experimental investigations were carried out to find the characteristics of grinding of ceramics. Grinding mechanisms of ceramics were inspected through the microscopic examination. It has been found that the specific grinding energy of ceramics is relatively low as compared to that of steels. The specific grinding energy affects the surface roughness and the residual stress of ground surface. The experimental results indicate that the rougher surface finish and higher compressive residual stress are obtained at lower specific grinding energy. The surface roughness and the residual stress of the ground surface have significant effects on the strength of ground piece of ceramics.

  • PDF

Tool Material Dependence of Hard Turning on The Surface Quality

  • Park, Young-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This paper presents an experimental study of the effect of cutting tool materials on surface quality when turning hardened steels. Machining tests on a lathe are performed using polycrystalline cubic boron nitride (PCBN) and ceramic tools at various cutting conditions without coolant. From the experiments, it is observed that the radial force is the largest force component regardless the type of tool used. The specific cutting energy for the hard turning is estimated to be considerably smaller than the specific grinding energy. It is also found that cutting force and surface roughness with the PCBN tools are higher and better than those with the ceramic tools under the same cutting condition. It is due that the PCBN tools transfer the generated heat more effectively than the ceramic tools due to their higher thermal conductivity. The optimal cutting conditions for the best surface quality are selected by using an orthogonal array concept.

Influence of Initial Water Content, Specific Surface, Air Drying and Freezing-thawing Action on the Liquid Limit of Soils (초기함수비, 비표면적, 풍건 및 동결.융해작용이 흙의 액성한계에 미치는 영향)

  • 류능환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.116-124
    • /
    • 1996
  • The purpose of The work described in this paper is to clear up the initial moisture content, specific surface, air drying and freezing-thawing process on liquid limit of clayey soils distributed widely at estuary of three main rivers in the west coast. To this end, a series of tests were conducted on clayey soils samples with natural state and treated state. From the test results, the liquid limit was decreased with decrement of initial moisture content, air drying process, and freezing-thawing cycles and increased with increment of specific surface. The specific surface which influenced on the liquid limit is over $25 m^2$m$^2$/g, and their relationships are well formulated. Air drying process is expected to improve the engineering properties of the soils such the pro-water properties were changed to anti-water proper-ties through lowering of water holding as resulted to incline from A-7-5 to A-5 on the soil classificaction plastic chart. The freezing-thawing process decreased 20% of liquid limit, especially under the first cycle of the behavious, as a result of above mentioned reasons, phase change of soil-water system brought the decrement of specific surface and affected to the liquid limit.

  • PDF

Combined effect of nitrogen- and oxygen functional groups on electrochemical performance of surface treated multi-walled carbon nanotubes (표면처리된 탄소나노튜브의 질소 및 산소관능기 도입에 따른 전기화학적 특성)

  • Kim, Ji-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.214.1-214.1
    • /
    • 2011
  • In this work, the electrochemical properties of the surface treated multi-walled carbon nanotubes (MWNTs) are investigated for supercapacitors. Nitrogen- and oxygen functional groups containing MWNTs are prepared by nitrogen precursors and acidic treatment, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and Zeta-potential measurements. The electrochemical properties of the MWNTs are investigated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M $H_2SO_4$ at room temperature. As a result, these functionalized MWNTs lead to an increase in the specific capacitance as compared with the pristine MWNTs. It proposes that the pyridinic and pyridinic-N-oxides nitrogen species influence on the specific capacitance due to their positive charges, and thus an improved electron transfer at high current loads, since they are the most important functional groups affecting capacitive behaviors.

  • PDF

Development of Certified Reference Materials for Specific Surface Area (비표면적 인증표준물질 개발)

  • Choi, Byung Il;Kim, Jong Chul;Kim, Taeyoung;Nham, Hyunsoo;Kwon, Su Yong
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.74-84
    • /
    • 2005
  • Understandings of adsorption characteristic of interface are very important in several advanced materials processes, related to NT and BT technology. Volumetric gas adsorption method, suitable for absolute measurements, is regarded as the standardized measurement technique for specific surface area. In order to verify the reliability of commercial equipments, certified reference materials (called CRM) of specific surface area are developed and evaluated its uncertainty factors by standard equipment which has traceability to SI units. Specific surface areas of developed materials are $10.72{\pm}0.46m^2g^{-1}$ for silicon nitride powders and $149.50{\pm}3.44m^2g^{-1}$ for alumina. These disseminations of CRMs would result in improved reliability chains in industrial processes, and lead eventually to contribution to productivity improvement, quality management, safety evaluation, and possibly to new material development.

Electrochemical Properties of EDLC Electrodes with Diverse Graphene Flake Sizes (그래핀 플레이크 크기에 따른 전기 이중층 커패시터용 전극의 전기화학적 특성)

  • Yu, Hye-Ryeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.112-116
    • /
    • 2018
  • Electric double layer capacitors (EDLCs) are promising candidates for energy storage devices in electronic applications. An EDLC yields high power density but has low specific capacitance. Carbon material is used in EDLCs owing to its large specific surface area, large pore volume, and good mechanical stability. Consequently, the use of carbon materials for EDLC electrodes has attracted considerable research interest. In this paper, in order to evaluate the electrochemical performance, graphene is used as an EDLC electrode with flake sizes of 3, 12, and 60 nm. The surface characteristic and electrochemical properties of graphene were investigated using SEM, BET, and cyclic voltammetry. The specific capacitance of the graphene based EDLC was measured in a 1 M $TEABF_4/ACN$ electrolyte at the scan rates of 2, 10, and 50 mV/s. The 3 nm graphene electrode had the highest specific capacitance (68.9 F/g) compared to other samples. This result was attributed to graphene's large surface area and meso-pore volume. Therefore, large surface area and meso-pore volume effectively enhances the specific capacitance of EDLCs.

Surface Functionalization of Carbon Fiber for High-Performance Fibrous Supercapacitor (고성능 섬유형 슈퍼커패시터를 위한 탄소섬유의 표면 기능화)

  • Lee, Young-Geun;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2022
  • Fibrous supercapacitors (FSs), owing to their high power density, good safety characteristic, and high flexibility, have recently been in the spotlight as energy storage devices for wearable electronics. However, despite these advantages, FCs face many challenges related to their active material of carbon fiber (CF). CF has low surface area and poor wettability between electrode and electrolyte, which result in low capacitance and poor long-term stability at high current densities. To overcome these limits, fibrous supercapacitors made using surface-activated CF (FS-SACF) are here suggested; these materials have improved specific surface area and better wettability, obtained by introducing porous structure and oxygen-containing functional groups on the CF surface, respectively, through surface engineering. The FS-SACF shows an improved ion diffusion coefficient and better electrochemical performance, including high specific capacity of 223.6 mF cm-2 at current density of 10 ㎂ cm-2, high-rate performance of 171.2 mF cm-2 at current density of 50.0 ㎂ cm-2, and remarkable, ultrafast cycling stability (96.2 % after 1,000 cycles at current density of 250.0 ㎂ cm-2). The excellent electrochemical performance is definitely due to the effects of surface functionalization on CF, leading to improved specific surface area and superior ion diffusion capability.

Cancer stem cell theory and update in oral squamous cell carcinoma (구강 편평세포암종에서의 암줄기세포 이론과 최신 지견)

  • Kim, Deok-Hun;Yun, Jun-Yong;Lee, Ju-Hyun;Kim, Soung-Min;Myoung, Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.2
    • /
    • pp.97-108
    • /
    • 2011
  • Cancer stem cells have stem cell-like features, such as the ability for self-renewal and differentiation but show unlimited growth because they have the lost normal regulation of cell growth. Cancer stem cells and normal stem cells have similar features. They show high motility, diversity of progeny, robust proliferative potential, association with blood vessels, immature expression profiles, nestin expression, epidermal growth factor (EGF)-receptor expression, phosphatase and tensin homolog (PTEN) expression, hedgehog pathway activity, telomerase activity, and Wnt pathway activity. On the other hand, with cancer cells, some of these signaling pathways are abnormally modified. In 1875, Cohnheim suggested the concept of cancer stem cells. Recently, evidence for the existence of cancer stem cells was identified. In 1994, the cancer stem cells' specific cell surface marker for leukemia was identified. Since then, other specific cell surface markers for cancer stem cells in solid tumors (e.g. breast and colon cancer) have been identified. In oral cancer, studies on cancer stem cells have been performed mainly with squamous cell carcinomas. Oral cancer specific cell surface markers, which are genes strongly expressed in oral cancer and cancer stem cell specific side populations, have been identified. Cancer stem cells are resistant to radiotherapy and chemotherapy. Therefore, to eliminate malignant tumors efficiently and reduce the recurrence rate, therapy targeting cancer stem cells needs to be performed. Currently, studies targeting the cancer stem cells' specific signaling pathways, telomerase and tumor vasculatures are being done.

A Study on the Grinding of Titanium Alloy Part 1 : Grinding force, Specific grinding energy, Surface roughness, G-ratio (티타늄 합금의 연삭에 관한 연구 Part 1: 연삭력, 비연삭에저니, 표면거칠기 , 연삭비)

  • Kim, S. H.;Lim, J. G.;Ha, S. B.;Choi, H.;lee, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.870-874
    • /
    • 2000
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6Al-4V). Grinding experiments were performed at various grinding conditions and the grinding forces and specific grinding energies were measured to investigate the grindability of titanium alloy with the three different wheels including Diamond, Green carbide and Alumina. To investigate the grinding characteristics of titanium alloy grinding force, force-ratio, specific grinding energy and grinding -ratio, were measured. Surface roughness was also measured with tracer and the ground surfaces were observed with SEM. Force-ratio of grinding of titanium alloy was very lower than that of grinding of SKD-11. Specific grinding energy are almost five times larger and rougher surface was obtained in titanium grinding.

  • PDF