• 제목/요약/키워드: Specific charge

검색결과 575건 처리시간 0.037초

Fabrication of Graphene Supercapacitors for Flexible Energy Storage

  • Habashi, M. Namdar;Asl, Shahab Khameneh
    • 한국재료학회지
    • /
    • 제27권5호
    • /
    • pp.248-254
    • /
    • 2017
  • In the present work, graphene powder was synthesized by laser scribing method. The resultant flexible light-scribed graphene is very appropriate for use in micro-supercapacitors. The effect of the laser scribing process in reducing graphene oxide (GO) was investigated. GO was synthesized using a chemical mixture of GO solution; then, it was coated onto a LightScribe DVD disk and laser scribed to reduce GO and create laser-scribed graphene (LSG). The CV curves of pristine rGO at various scan rates showed that the ultimate product possesses the ability to store energy at the supercapacitor level. Charge-discharge curves of pristine rGO at two different current densities indicated that the specific capacitance ($C_m$) increases due to the reduction of the discharge current density. Finally, the long-term charge-discharge stability of the LSG was plotted and indicates that the specific capacitance decreases very slightly from its primary capacitance of ${\sim}10F\;cm^{-3}$ and that the cyclic stability is favorable over 1000 cycles.

Preparation and Electrochemical Properties of Carbon Cryogel for Supercapacitor

  • Song, Min-Seob;Nahm, Sahn;Oh, Young-Jei
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.662-666
    • /
    • 2008
  • Electrochemical properties of carbon cryogel electrode for the application of composite electrode materials mixed with metal oxide in supercapacitor have been studied. Carbon cryogels were synthesized by sol-gel polycondensation of resorcinol with form aldehyde, followed by a freeze drying, and then pyrolysis in an inert atmosphere. Physical properties of carbon cryogel were characterized by BET, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that carbon cryogel is amorphous material. The electrochemical properties of carbon cryogel were measured by cyclic voltammetry as a function of concentration of liquid electrolyte, galvanostatic charge-discharge with different scan rates and electrochemical impedance measurements. The result of cyclic voltammetry indicated that the specific capacitance value of a carbon cryogel electrode was approximately 150.2 F/g (at 5 mV/s in 6M KOH electrolyte).

주유소의 가격결정전략 (The Pricing Behavior of Korean Gas Stations)

  • 조영진;이지훈;윤충한
    • 대한안전경영과학회지
    • /
    • 제17권3호
    • /
    • pp.331-341
    • /
    • 2015
  • Gasoline prices vary across Korea. Some gas stations charge higher prices, while others charge lower prices. In this paper, we try to find: why gasoline prices differ markedly across regions. We empirically estimate the determinants of gas prices by incorporating supply side factors as well as demand side factors into the empirical model. Empirical results show that both location-specific factors and store-specific factors affect gas prices. Concentration of competing stores, store brands, ownership of gas stations, and self-service availability influence gas prices. In addition, the availability of other customer services such as convenience stores, car wash, and auto repairs affects gas prices.

비정질 셀레늄 필름의 공명 비행시간 조사 (Time of Fight Resonace Investigation of Amorphous Selenium Films)

  • 박지군;박성광;이동길;최장용;안상호;은충기;남상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.501-504
    • /
    • 2001
  • We used time-of-flight method to analyze transport properties of charge carrier which is produced by X-ray exposure. It is the research of charge transport and specific property of trap that is performed in direct digital x-ray image receptor. But the results shows us different measurement value of electron and charge drift mobility and it is difficult to precise analysis about charge transport properties and trap mechanism. We measured transit time and drift mobility of charge carriers using time-of-flight method to evaluate the correlation of a-Se thickness change and electric field. We made a testing glass with a-Se of 400 ${\mu}m$ thickness on coming glass using thermoevaporation method and built Au electrode with 300nm, $2{\varphi}$ on both sides of a-Se, As a result of this experiment, electron and hole transit time was each $229.17{\mu}s$ and $8.73{\mu}s$ at $10V/{\mu}m$ electric field and Drift mobility was each $0.00174 cm^{2}/V{\cdot}s$, $0.04584cm^{2}/V{\cdot}s$.

  • PDF

비정질 셀레늄 필름의 공명 비행시간 조사 (Time of Flight Resonace Investigation of Amorphous Selenium Films)

  • 박지군;박성광;이동길;최장용;안상호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.501-504
    • /
    • 2001
  • We used time-of-flight method to analyse transport properties of charge carrier which is produced by X-ray exposure. It is the research of charge transport and specific property of trap that is performed in direct digital x-ray image receptor. But the results shows us different measurement value of electron and charge drift mobility and it is difficult to precise analysis about charge transport properties and trap mechanism. We measured transit time and drift mobility of charge carriers using time-of-fight method to evaluate the correlation of a-Se thickness change and electric field. We made a testing glass with a-Se of 470 ${\mu}{\textrm}{m}$ thickness on corning glass using thermoevaporation method and built Au electrode with 300nm, 2$\phi$ on both sides of a-Se. As a result of this experiment, electron and hole transit time was each 229.17 $\mu$s and 8.737 $\mu$s at 10V/${\mu}{\textrm}{m}$ electric field and Drift mobility was each 0.00174 $\textrm{cm}^2$/V.s, 0.04584 $\textrm{cm}^2$/V.s.

  • PDF

페놀계 활성탄소섬유 전극과 유기성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성 (Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Organic Electrolytes)

  • 안계혁;김종휘;신경희;노근애;김태환
    • 공업화학
    • /
    • 제10권6호
    • /
    • pp.822-827
    • /
    • 1999
  • 본 연구에서는 에너지 밀도가 큰 초고용량 캐패시터를 제작하기 위한 기초 연구로서 활성탄소섬유의 물성과 유기 전해질의 특성이 초고용량 캐패시터의 전기화학적 특성에 미치는 영향을 조사하였다. 유기성 전해질의 경우는 이온의 크기가 수용성 전해질 보다 훨씬 크기 때문에 탄소전극의 세공크기에 많은 영향을 받으며, 용량을 발현할 수 있는 유효세공의 크기가 커야 한다는 것을 알 수 있었다. 혼합용매를 이용한 전해액의 조성은 큰 비축전용량과 빠른 충전속도, 그리고 낮은 ESR 및 방전전류의 세기에 대한 높은 비축전용량 유지성 등의 우수한 충방전 특성을 나타내는 것을 알 수 있었고, 전해질의 높은 이온전도도가 용량발현 및 자가방전 특성에 큰기여를 하고 있으며, 전해질 이온의 크기는 충전속도에 많은 영향을 미치는 것을 알 수 있었다.

  • PDF

A New Way to Prepare MoO3/C as Anode of Lithium ion Battery for Enhancing the Electrochemical Performance at Room Temperature

  • Yu, Zhian;Jiang, Hongying;Gu, Dawei;Li, Jishu;Wang, Lei;Shen, Linjiang
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.170-178
    • /
    • 2016
  • Composited molybdenum oxide and amorphous carbon (MoO3/C) as anode material for lithium ion batteries has been successfully synthesized by calcining polyaniline (PANI) doped with ammonium heptamolybdate tetrahydrate (AMo). The as prepared electrode material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical performance of the anode was investigated by galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The MoO3/C shows higher specific capacity, better cyclic performance and rate performance than pristine MoO3 at room temperature. The electrochemical of MoO3/C properties at various temperatures were also investigated. At elevated temperature, MoO3/C exhibited higher specific capacity but suffered rapidly declines. While at low temperature, the electrochemical performance was mainly limited by the low kinetics of lithium ion diffusion and the high charge transfer resistance.

유기전해액 $LiMn_{2}O_{4}$/Lithium 전지의 전기화학적 특성 (Electrochemical Characteristics of $LiMn_{2}O_{4}$/Lithium Cells in Organic Electrolyte)

  • 임정환;도칠훈;문성인;윤문수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.371-374
    • /
    • 2000
  • The electrochemical properties of LiM $n_2$ $O_4$as a cathode and an anode for the lithium secondary battery were evaluated. When LiM $n_2$ $O_4$ material was used as the cathode with the current collector of aluminum, the 1st specific capacity and the 1st Ah efficiency in LiM $n_2$ $O_4$/lithium cell were 123 mAh/g and 91.7%, respectively The anodic properties of LiM $n_2$ $O_4$ material was also evaluated in the LiM $n_2$ $O_4$/1ithium cell with the current collector of copper. It showed that the LiM $n_2$ $O_4$ was useful as the anode for the lithium secondary battery. During the 1st discharge, a potential plateau was observed at the potential of 0.3 $V_{Li}$ Li+/. The 1st specific charge capacity and the 1st specific discharge capacity were 790 mAh/s and 362 mAh/g, respectively. Therefore, the 1st Ah efficiency was 46%. The discharge capacity was gradually faded with the charge-discharge cycling to about 50th cycles. Thereafter, the discharge capacity was stabilized to about 110 mAh/g.

  • PDF

Effects of Spray Surfactant and Particle Charge on Respirable Coal Dust Capture

  • Tessum, Mei W.;Raynor, Peter C.
    • Safety and Health at Work
    • /
    • 제8권3호
    • /
    • pp.296-305
    • /
    • 2017
  • Background: Surfactant-containing water sprays are commonly used in coal mines to collect dust. This study investigates the dust collection performance of different surfactant types for a range of coal dust particle sizes and charges. Methods: Bituminous coal dust aerosol was generated in a wind tunnel. The charge of the aerosol was either left unaltered, charge-neutralized with a neutralizer, or positively- or negatively-charged using a diffusion charger after the particles were neutralized. An anionic, cationic, or nonionic surfactant spray or a plain water spray was used to remove the particles from the air flow. Some particles were captured while passing through spray section, whereas remaining particles were charge-separated using an electrostatic classifier. Particle size and concentration of the charge-separated particles were measured using an aerodynamic particle sizer. Measurements were made with the spray on and off to calculate overall collection efficiencies (integrated across all charge levels) and efficiencies of particles with specific charge levels. Results: The diameter of the tested coal dust aerosol was $0.89{\mu}m{\pm}1.45$ [geometric $mean{\pm}geometric$ standard deviations (SD)]. Respirable particle mass was collected with $75.5{\pm}5.9%$ ($mean{\pm}SD$) efficiency overall. Collection efficiency was correlated with particle size. Surfactant type significantly impacted collection efficiency: charged particle collection by nonionic surfactant sprays was greater than or equal to collection by other sprays, especially for weakly-charged aerosols. Particle charge strength was significantly correlated with collection efficiency. Conclusion: Surfactant type affects charged particle spray collection efficiency. Nonionic surfactant sprays performed well in coal dust capture in many of the tested conditions.

Solid state electrochemical double layer capacitors with natural graphite and activated charcoal composite electrodes

  • Hansika, P.A.D.;Perera, K.S.;Vidanapathirana, K.P.;Zainudeen, U.L.
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.37-46
    • /
    • 2019
  • Electrochemical double layer capacitors (EDLCs) which are fabricated using carbon based electrodes have been emerging at an alarming rate to fulfill the energy demand in the present day world. Activated charcoal has been accepted as a very suitable candidate for electrodes but its cost is higher than natural graphite. Present study is about fabrication of EDLCs using composite electrodes with activated charcoal and Sri Lankan natural graphite as well as a gel polymer electrolyte which is identified as a suitable substitute for liquid electrolytes. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Galvanostatic Charge Discharge test were done to evaluate the performance of the fabricated EDLCs. Amount of activated charcoal and natural graphite plays a noticeable role on the capacity. 50 graphite : 40 AC : 10 PVdF showed the optimum single electrode specific capacity value of 15 F/g. Capacity is determined by the cycling rate as well as the potential window within which cycling is being done. Continuous cycling resulted an average single electrode specific capacity variation of 48 F/g - 16 F/g. Capacity fading was higher at the beginning. Later, it dropped noticeably. Initial discharge capacity drop under Galvanostatic Charge Discharge test was slightly fast but reached near stable upon continuous charge discharge process. It can be concluded that initially some agitation is required to reach the maturity. However, the results can be considered as encouraging to initiate studies on EDLCs using Sri Lankan natural graphite.