• Title/Summary/Keyword: Specific bending stiffness

Search Result 43, Processing Time 0.022 seconds

Design of One-piece Composite Propeller Shaft for a Rear Wheel Drive Automobile (후륜구동 자동차용 일체형 복합재료 동력전달축의 설계)

  • 김진국;조덕현;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.49-52
    • /
    • 1999
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece propeller shafts composed of carbon/epoxy composite and glass/epoxy one were designed and manufactured for a rear wheel drive automobile, which uses generally a steel two-piece propeller shaft. From the tests of the composite propeller shafts, it was found that the propeller shafts satisfied requirements of static torque transmission capability, torsional buckling capability and the first natural bending frequency and had 40% weight saving effect compared with steel propeller shaft.

  • PDF

Thermal Characteristics of Hybrid Insert for Carbon Composite Satellite Structures

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.162-167
    • /
    • 2015
  • Composite sandwich structures are widely employed in various applications, due to their high specific stiffness and specific bending strength compared to solid panels. Lately, for that reason, the advanced composite sandwich structures are employed in satellite structures: materials should be as light as possible with the highest attainable performance. This study is majorly focused on inserts employed to the composite sandwich satellite structures. A new hybrid insert design was developed in precedent study to reduce the mass of the sandwich structure since the mass of the satellite structure is related to high launching cost [1]. In this study, the thermal characteristics and behavior of the precedently developed hybrid insert with carbon composite reinforcing web and the conventional partial insert were numerically investigated.

Implementation of curved type a metallic plate system at the Bone contact (골 접촉 곡선형 금속 고정 시스템 구현)

  • Kim, Jeong-Lae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.285-292
    • /
    • 2007
  • This study was developed the metallic plate for fixation in the femur fracture for the orthopedic region and rigid fixation with plates has a firm place in fracture treatment. Most plates can be used for rigid as well as biological and dynamical fracture fixation. The device's designation and sizing has a specific with bending structural stiffness and strength, known meaning that is reliable regardless of the plate by the short type and long type. Short plate have a wrapping of femur and long plate have to preserve a pole of femur. The bending strength of the curved metallic long plate has to evaluate a 11,000N and The bending strength of the curved metallic short plate has to evaluate a 6,525N. The tensile stress through to press a plate is $1573N/m^2\;and\;1539N/m^2$. The device can be used to support Revision case of Hip Implant and to use a case of Hip screw compression of Hip Neck Fracture.

  • PDF

The Evaluation of Interlaminar Fracture Toughness and AE Characteristics in a Plain Woven CFRP Composite with ENF Specimen (ENF 시험편을 이용한 평직 CFRP의 층간파괴인성 및 AE 특성 평가)

  • Yun, Y.S.;Kwon, O.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.117-123
    • /
    • 2006
  • Woven fabrics composites are used as primary structural components in many applications because of their superior properties that offer high specific strength and stiffness. However, the complexity of the fabric structure makes understanding of their failure behavior very difficult. Also, laminate woven fabrics CFRP have unique failure mechanisms such as fiber bridging, fiber/matrix crack and so on. In particular, the delamination phenomenon of the composite materials is one of the most frequent failure mechanisms. So, we estimated interlaminar fracture and damage in composites using as ENF specimen by a 3 point bending test. And AE characteristics were examined for crack propagation on plain woven CFRP. We obtained the following conclusions from the results of the evaluation of the 3 point bending fracture test and AE characteristic estimation. AE counts of maximum crack length were obtained as $85.97{\times}10^4\;and\;93{\times}10^3\;for\;a_0/L=0.3$ and 0.6, respectively. Also the maximum amplitudes were over 80dB at both $a_0/L=0.3\;and\;0.6$. $G_{IIc}$ at that's $a_0/L$ ratio were obtained with $1.07kJ/m^2\;and\;3.79kJ/m^2$.

  • PDF

A New Method to Fabricate Bulk PCMs from Continuous Wires and the Mechanical Behaviors (연속된 와이어를 이용한 다층 PCM의 제조방법 및 특성 평가)

  • Lee, Yong-Hyun;Choi, Ji-Eun;Jeon, In-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.245-252
    • /
    • 2007
  • Since the new millennium, truss PCMs(Periodic Cellular Metals) have drawn attention because of their superior specific stiffness, strength and multi-functionality. Prior studies have focused on the structural design and optimization. Kagome truss PCM has been proved to have the higher resistance to plastic buckling, more plastic deformation energy and lower anisotropy than other truss PCMs. In this study, we introduce a new idea to fabricate multi-layered Kagome truss PCM from continuous wires which can gain high strength as in piano wires and can be controlled to be defect free owing to drawing process. The relative density, the stiffness and the strength under bending and compressive load are estimated through elementary mechanics and compared with the results from experiments and FEA. The failure mechanisms are analyzed, and also mechanical performance and production are discussed.

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

Design of Adhesive Joints for Composite Propeller Shafts (복합재료 동력전달축의 접착조인트 설계)

  • 김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.149-153
    • /
    • 2000
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece propeller shafts composed of carbonfepoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesively bonded joint was employed to join the composite shaft and the aluminum yoke. For the optimal adhesive joining of the composite propeller shaft to the aluminum yoke, the torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element method and compared with the experimental result. Then an optimal design method was proposed based on the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and FEM analyses, it was found that the static torque transmission capability of composite propeller shaft was maximum at the critical yoke thickness, and it saturated beyond the critical length. Also, it was found that the one-piece composite propeller shaft had 40% weight saving effect compared with a two-piece steel propeller shaft.

  • PDF

Fabrication and Mechanical Properties of Carbon Nanotube Probe for Ultrasmall Force Measurement in Biological Application (생물학적 초미세력 검출을 위한 탄소나노튜브 프로브의 제작 및 기계적 특성 검출)

  • Kwon, Soon-Geun;Park, Hyo-Jun;Lee, Hyung-Woo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.140-147
    • /
    • 2008
  • In this study, a carbon nanotube probe (CNT probe) is proposed as a mechanical force transducer for the measurement of pico-Newton (pN) order force in biological applications. In order to measure nantube's displacement in the air or liquid environment, the fabrication of a CNT probe with tip-specific loading of fluorescent dyes is performed using tip- specific functionalization of the nanotube and chemical bonding between dyes and nanotube. Also, we experimentally investigated the mechanical properties of the CNT probe using electrostatic actuation and fluorescence microscope measurement. Using fluorescence measurement of the tip deflection according to the applied voltage, we optimized the bending stiffness of the CNT probe, therefore determined the spring constant of the CNT probe. The results show that the spring constant of CNT probes is as small as 1 pN/nm and CNT probes can be used to measure pN order force.

Structural evaluation of all-GFRP cable-stayed footbridge after 20 years of service life

  • Gorski, Piotr;Stankiewicz, Beata;Tatara, Marcin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.527-544
    • /
    • 2018
  • The paper presents the study on a change in modal parameters and structural stiffness of cable-stayed Fiberline Bridge made entirely of Glass Fiber Reinforced Polymer (GFRP) composite used for 20 years in the fjord area of Kolding, Denmark. Due to this specific location the bridge structure was subjected to natural aging in harsh environmental conditions. The flexural properties of the pultruded GFRP profiles acquired from the analyzed footbridge in 1997 and 2012 were determined through three-point bending tests. It was found that the Young's modulus increased by approximately 9%. Moreover, the influence of the temperature on the storage and loss modulus of GFRP material acquired from the Fiberline Bridge was studied by the dynamic mechanical analysis. The good thermal stability in potential real temperatures was found. The natural vibration frequencies and mode shapes of the bridge for its original state were evaluated through the application of the Finite Element (FE) method. The initial FE model was created using the real geometrical and material data obtained from both the design data and flexural test results performed in 1997 for the intact composite GFRP material. Full scale experimental investigations of the free-decay response under human jumping for the experimental state were carried out applying accelerometers. Seven natural frequencies, corresponding mode shapes and damping ratios were identified. The numerical and experimental results were compared. Based on the difference in the fundamental natural frequency it was again confirmed that the structural stiffness of the bridge increased by about 9% after 20 years of service life. Data collected from this study were used to validate the assumed FE model. It can be concluded that the updated FE model accurately reproduces the dynamic behavior of the bridge and can be used as a proper baseline model for the long-term monitoring to evaluate the overall structural response under service loads. The obtained results provided a relevant data for the structural health monitoring of all-GFRP bridge.

Feasibility of Domestic Yellow Poplar (Liriodendron tulipifera) Dimension Lumber for Structural Uses (국산 백합나무 구조용 제재목의 이용가능성 평가)

  • Lim, Jin-Ah;Oh, Jung-Kwon;Yeo, Hwan-Myeong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.470-479
    • /
    • 2010
  • In this study, the visual grading based on the visual characteristics and structural timber bending test were conducted for domestic yellow poplar dimension lumber. Structural performance of domestic yellow poplar dimension lumber was conducted through the evaluation of strength and stiffness. Visual grading rule of yellow poplar dimension lumber did not exist in Korea. Visual grading of yellow poplar dimension lumber was performed according to the NSLB (Northern Softwood Lumber Bureau) standard grading rules including several hardwood dimension lumber. The allowable bending stress was calculated from the results of a visual grading. Compared with NDS (National Design Specification), the yellow poplar dimension lumber showed enough strength for structural uses. In addition, the visual grading was performed according to the KFRI (Korea Forest Research Institute) grading rule to calculated allowable bending stress and to evaluated the feasibility. The yellow poplar was classified into the pine groups by the KFRI criteria regulated by specific gravity. Allowable bending stress based on weibull distribution had became highly than KFRI criteria, as No. 1 (10.0 MPa), No. 2 (7.4 MPa) and No. 3 (4.1 MPa). And the availability of yellow poplar dimension lumber for structural uses had been confirmed. The Modulus of Elasticity (MOE) of domestic yellow poplar dimension lumber had not met the NDS and KFRI criteria. However, for the use of domestic yellow poplar, average values of MOE which obtained through this test were suggested as design value for domestic yellow poplar. Design values were supposed No. 1, 2 (9,000 MPa) and No. 3 (8,000 MPa).