• Title/Summary/Keyword: Specific Stiffness

Search Result 331, Processing Time 0.019 seconds

Contact Stress Analysis of Stick Type Ignition Coil Jacket PET (Stick Type Ignition Coil Jacket PET의 접촉응력 해석)

  • Kim Yang-Sul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.1-6
    • /
    • 2005
  • Stick type ignition coil is new development that connect directly with ECU(Electronic control unit), without needing a spark plug cable and distributor. Glass-fiber reinforced ploymeric composites provide the desirable properties of high stiffness and strength as well as low specific weight. Stick type ignition coil jacket is using PBT CF30 resin. PBT CF30 resin is a kind of electric insulation which is a superior engineering plastic that is used to prevent the leakage of the electrical current. If PET receive a mistake of design or excessive force when HV terminal oppress on jacket, it can happen to crack. Local stress concentrations occurring on the contact surface, the contact phenomenon becomes a direct cause to the wear and failure of mechanical structures. When it is cracked, it can allow a leakage of the electrical current. So, in this study, we analyze the contact stress to PBT jacket using ANSYS program, when HV terminal oppress on jacket. We suppose PBT to be Jacket and we analyzed contact stress that happens in PET like PBT analysis method. We compared the use of PBT and PET.

Effects of traffic-induced vibrations on bridge-mounted overhead sign structures

  • Kim, Janghwan;Kang, Jun Won;Jung, Hieyoung;Pack, Seung-woo
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.365-377
    • /
    • 2015
  • Large-amplitude vibration of overhead sign structures can cause unfavorable psychological responses in motorists, interfere with readability of the signs, and lead to fatigue cracking in the sign structures. Field experience in Texas suggests that an overhead sign structure can vibrate excessively when supported within the span of a highway bridge instead of at a bent. This study used finite element modeling to analyze the dynamic displacement response of three hypothetical sign structures subjected to truck-passage-induced vertical oscillations recorded for the girders from four actual bridges. The modeled sign bridge structures included several span lengths based on standard design practices in Texas and were mounted on precast concrete I-girder bridges. Results revealed that resonance with bridge girder vertical vibrations can amplify the dynamic displacement of sign structures, and a specific range of frequency ratios subject to undesirable amplification was identified. Based on these findings, it is suggested that this type of sign structure be located at a bridge bent if its vertical motion frequency is within the identified range of bridge structure excitation frequencies. Several alternatives are investigated for cases where this is not possible, including increasing sign structure stiffness, reducing sign mass, and installing mechanical dampers.

Case Study of Non-Metallic Repair Systems for Metallic Piping

  • Hammad, Bakr. S.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • Non-metallic composite overwrap repair methods utilize resin based fiber-reinforced composite materials, which have higher specific strength to weight ratio and stiffness, superior corrosion and fatigue resistance, and substantially reduced weight when compared to carbon steel. Non-metallic repair methods/systems can allow desired functional properties to be achieved at a respectable economic advantage. For example, non-metallic composite repair systems have at least a 50 year design stress of 20 ksi and approximately 25% of the short term tensile strength of fiberglass. For these systems, the contribution of the repaired steel to the load carrying capability need not be considered, as the strength of the repair itself is sufficient to carry the internal pressure. Worldwide experience in the Oil & Gas industry confirms the integrity, durability, inherent permanency, and cost-effectiveness of non-metallic composite repair or rehabilitation systems. A case study of a recent application of a composite repair system in Saudi Aramco resulted in savings of 37% for offshore subsea line and 75% for onshore above grade pipeline job. Maintaining a pipeline can be costly but it is very small in comparison to the cost of a failure. Pipeline proponents must balance maintenance costs with pipeline integrity. The purpose is not just to save money but also to attain a level of safety that is acceptable. This technology involves the use of an epoxy polymer resin based, fiber-reinforced composite sleeve system for rehabilitation and /or repair pipelines.

Operational modal analysis of reinforced concrete bridges using autoregressive model

  • Park, Kyeongtaek;Kim, Sehwan;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1017-1030
    • /
    • 2016
  • This study focuses on the system identification of reinforced concrete bridges using vector autoregressive model (VAR). First, the time series output response from a bridge establishes the autoregressive (AR) models. AR models are one of the most accurate methods for stationary time series. Burg's algorithm estimates the autoregressive coefficients (ARCs) at p-lag by reducing the sum of the forward and the backward errors. The computed ARCs are assembled in the state system matrix and the eigen-system realization algorithm (ERA) computes: the eigenvector matrix that contains the vectors of the mode shapes, and the eigenvalue matrix that contains the associated natural frequencies. By taking advantage of the characteristic of the AR model with ERA (ARMERA), civil engineering can address problems related to damage detection. Operational modal analysis using ARMERA is applied to three experiments. One experiment is coupled with an artificial neural network algorithm and it can detect damage locations and extension. The neural network uses a specific number of ARCs as input and multiple submatrix scaling factors of the structural stiffness matrix as output to represent the damage.

Mechanical performance and design optimization of rib-stiffened super-wide bridge deck with twin box girders in concrete

  • Wen, Xiong;Ye, Jianshu;Gai, Xuemei;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.395-414
    • /
    • 2013
  • The present study fundamentally investigated the mechanical performance of the rib-stiffened super-wide bridge deck with twin box girders in concrete, which is a very popular application to efficiently widen the bridges with normal span. The shear lag effects of the specific cross-sections were firstly studied. The spatial stress distribution and local stiffness of the bridge deck with twin box girders were then investigated under several typical wheel load conditions. Meanwhile, a comparative study for the bridge deck with and without stiffening ribs was also carried out during the investigation; thereby, a design optimization for the stiffening ribs was further suggested. Finally, aiming at the preliminary design, an approximate methodology to manually calculate the bending moments of the rib-stiffened bridge deck was analytically proposed for engineers to quickly assess its performance. This rib-stiffened bridge deck with twin box girders can be widely applied for concrete (especially concrete cable-stayed) bridges with normal span, however, requiring a super-wide bridge width due to the traffic flow.

Design of Front Lower Control Arm Considering Buckling Strength and Durability Strength

  • Lee, Dong-Chan;Kim, Young-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.77-84
    • /
    • 2010
  • Recently, the concept of structural design against instability has been proposed in the chassis parts. The design considerations of lower control arm of chassis parts under the buckling and durability strengths are the general. More precisely, this paper considers a specific application and associated optimization problem for two strengths, where the design variables are the physical or geometric dimensions for skins and stiffeners. The objective is the minimization of the total weight, while optimization constrains involve reserve or improve factors for the buckling and durability strengths. The most important features are related to the numerical simulations for the estimation of buckling factor and their sensitivities by means of nonlinear and linear finite element analyses. The bucking and durability strength analyses, and the morping geometries are directly included in the optimization problem and the modified design is formulated. As a result, the optimal structure with stable behavior is obtained or increases the buckling and durability strengths of parts. Most of design problems for structures exposed to elastic instability can be formulated and solved.

  • PDF

The Changes of the Shape and Particle Size Distribution of δ' Phase on Ageing in Al-Li-( Cu, Zr) Alloys (Al-Li-( Cu, Zr) 합금에서 시효에 따른 δ' 상의 형상 및 입자크기분포의 변화)

  • Woo, K.D.;Cho, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.2
    • /
    • pp.96-102
    • /
    • 1994
  • The present work was aimed to examine the changes of the shape and particle size distribution(PSD) of ${\delta}^{\prime}$ particles on ageing in Al-Li-(Cu, Zr) alloys which had low density, high specific strength and stiffness, Increasing ageing time and temperature resulted in particles whose aspect ratio tended toward 1. The aspect ratio of ${\delta}^{\prime}$ particles was not dependent upon the ageing temperature and time in Al-Li-Cu alloy but was dependent upon them in Al-Li-Zr alloy. The PSD of ${\delta}^{\prime}$ particles in Al-Li-Zr alloy skewed to the right hand compared with that in Al-Li-Cu alloy, because $Al_3Zr$ phase in Al-Li-Zr alloy formed before ageing promoted the precipitation and growth of ${\delta}^{\prime}$ phase. Therefore, the PSD of the ${\delta}^{\prime}$ particles was found to be affected by the presence of $Al_3Zr$ particles. The growth rate of ${\delta}^{\prime}$ phase was not affected by the existence of the third transition phase $T_1$ formed by the addition of Cu in Al-Li alloy but was affected by the existence of $Al_3Zr$ formed by the addition of Zr in Al-Li alloy.

  • PDF

A Study on the Precipitation Behaviors in Rapidly Solidified AI-Li-Ti Alloys (급냉응고된 AI-Li-Ti 합금의 시효석출거동에 관한 연구)

  • Kim, Jae-Dong;Jeong, Hae-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.279-286
    • /
    • 1995
  • As Al-Li based alloys are to find widespread use in aerospace and other structural applications in which their low-density high specific stiffness properties be exploited, their mechanical properties must adequately match those of the which they intended to replace. In order to develop these purposed, the precipitation behaviors of the rapidly solidified Al-Li-Ti alloys aged at various temperature were investigated. ${\delta}'$ phase precipitated homogeneously in the matrix during not only melt quenching but also aging at the aging temperature of $160^{\circ}C\;and\;210^{\circ}C$. The addition of the Ti in Al-Li alloy promoted the formation of $\delta$' phase. The addition of Ti on the ${\delta}'$ solvus line had a little effect over the thermodynamics ${\delta}'$ solvus line. The reason for these behavior was that the ${\delta}'$ phase was suppressed to precipitate as much as supercooling by melt quenching. The discontinuous precipitation reaction occurred by the preferential growth of ${\delta}'$ phase due to the migration of grain boundary provided the driving force dependent of solute concentration fluctuations.

  • PDF

Nondestructive Damage Identification in a Truss Structure Using Time Domain Responses (시간영역의 응답을 사용한 트러스 구조물의 비파괴 손상평가)

  • Choi, Sang-Hyun;Park, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.89-95
    • /
    • 2003
  • In this paper, an algorithm to locate and size damage in a complex truss structure using the time domain response is presented. Sampled response data for specific time interval is spatially expanded over the structure to obtain the mean train energy for each element of the structure. The mean strain energy for each element is, in turn, used to build a damage index that represents the ratio of the stiffness parameter of the pre-damaged to the post-damaged structure. The validity of the methodology is demonstrated using data from a numerical example of a space truss structure with simulated damage. Also in the example, the effects of noisy data on the proposed algorithm are examined by adding random noised to the response data.

Relationships for prediction of backstay effect in tall buildings with core-wall system

  • Karimi, Mahdi;Kheyroddin, Ali;Shariatmadar, Hashem
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.35-54
    • /
    • 2020
  • One of the prevailing structural systems in high-rise buildings is the core-wall system. On the other hand, the existence of one or more underground stories causes the perimeter below-grade walls with the diaphragm of grade level to constitute of a very stiff box. In this case or a similar situation, during the lateral response of a tall building, underground perimeter walls and diaphragms that provide an increased lateral resistance relative to the core wall may introduce a prying action in the core that is called backstay effect. In this case, a rather great force is generated at the diaphragm of the grade-level, acting in a reverse direction to the lateral force on the core-wall system, and thus typically causes a reverse internal shear. In this research, in addition to review of the results of the preceding studies, an improved relationship is proposed for prediction of backstay force. The new proposed relationship takes into account the effect of foundation flexibility and is presented in a non-dimensional form. Furthermore, a specific range of the backstay force to lateral load ratio has been determined. And finally, it is shown that although all suggested formulas are valid in the elastic domain, yet with some changes in the initial considerations, they can be applied to some certain non-linear problems as well.