• Title/Summary/Keyword: Specific Noise

Search Result 700, Processing Time 0.03 seconds

Joint User Scheduling and Power Control Considering Both Signal and Interference for Multi-Cell Networks (다중 셀 상향링크 네트워크에서 신호와 간섭을 동시에 고려하는 전력 제어 및 사용자 스케쥴링)

  • Cho, Moon-Je;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.477-483
    • /
    • 2016
  • In this paper, we propose a distributed user scheduling with interference-aware power control (IAPC) to maximize signal to generating interference plus noise ratio (SGINR) in uplink multi-cell networks. Assuming that the channel reciprocity time-division duplexing (TDD) system is used, the channel state information (CSI) can be obtained at each user from pilot signals from other BSs. In the proposed scheduling, to be specific, each user reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest SGINR among users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms. It is worth noting that the proposed technique operates with distributed manner without information exchange among cells. Hence, it can be easily applied to the practical wireless systems like 3GPP LTE without significant modifications of the specification.

uPaging : A Voice Message Delivery System Based on Real-Time Location-Awareness (uPaging : 실시간 위치 인식 기반의 음성메시지 전송 시스템)

  • Park, Yu-Jin;Jun, Sang-Ho;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1004-1013
    • /
    • 2012
  • The legacy voice broadcast systems are used to broadcast the voice over an entire space or a specific zone. these broadcast systems generate unnecessary noise and waste of resources. In this paper, we propose a ubiquitous voice message broadcast system called uPaging, by combining the technique of location-awareness and the voice message delivery service in ubiquitous sensor network environment. In uPaging system, the wire/wireless hybrid network is used to implement the network system. Also, in order to actualize the location-awareness service, we use the Bidirectional Location ID-Exchange protocol was suggested by our previous research. the uPaging system can deliver the voice to a selected user or the location in which the user is present by this location awareness.

Design of a New Audio Watermarking System Based on Human Auditory System (청각시스템을 기반으로 한 새로운 오디오 워터마킹 시스템 설계)

  • Shin, Dong-Hwan;Shin Seung-Won;Kim, Jong-Weon;Choi, Jong-Uk;Kim, Duck-Young;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.7
    • /
    • pp.308-316
    • /
    • 2002
  • In this paper, we propose a robust digital copyright-protection technique based on the concept of human auditory system. First, we propose a watermarking technique that accepts the various attacks such as, time scaling, pitch shift, add noise and a lot of lossy compression such as MP3, AAC WMA. Second, we implement audio PD(portable device) for copyright protection using proposed method. The proposed watermarking technique is developed using digital filtering technique. Being designed according to critical band of HAS(human auditory system), the digital filers embed watermark without nearly affecting audio quality. Before processing of digital filtering, wavelet transform decomposes the input audio signal into several signals that are composed of specific frequencies. Then, we embed watermark in the decomposed signal (0kHz~11kHz) by designed band-stop digital filer. Watermarking detection algorithm is implemented on audio PD(portable device). Proposed watermarking technology embeds 2bits information per 15 seconds. If PD detects watermark '11', which means illegal song. PD displays "Illegal Song" message on LCD, skips the song and plays the next song, The implemented detection algorithm in PD requires 19 MHz computational power, 7.9kBytes ROM and 10kBytes RAM. The suggested technique satisfies SDMI(secure digital music initiative) requirements of platform3 based on ARM9E core.

Performance analysis of adaptive turbo coded modulation over mobile communication channel (이동통신 채널에서 적응터보부호화 변조방식의 성능분석)

  • Kim, Yeon-Su;Lee, Sang-Hoon;Joo, Eon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.69-78
    • /
    • 2006
  • High spectral efficiency can be obtained by adaptive modulation in which the modulation scheme is changed according to the channel environment. Thus it is especially suitable to mobile channel which is a typical example of time-varying channel. It is required to determine the optimum thresholds of signal-to-noise ratio(SNR) to change the modulation scheme effectively according to mobile speeds. Thus the optimum thresholds for specific mobile speeds to get the required bit error rate(BER) of $10^{-6}$ are obtained with the powerful turbo code in this paper. In addition, the optimum thresholds for the continuous mobile speed are proposed by interpolation of the obtained results. And the error performance and average spectral efficiency are investigated at various mobile speeds and channel environments.

ANN-based Adaptive Distance Measurement Using Beacon (비콘을 사용한 ANN기반 적응형 거리 측정)

  • Noh, Jiwoo;Kim, Taeyeong;Kim, Suntae;Lee, Jeong-Hyu;Yoo, Hee-Kyung;Kang, Yungu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.147-153
    • /
    • 2018
  • Beacon enables one to measure distance indoors based on low-power Bluetooth low energy (BLE) technology, while GPS (Global Positioning System) only can be used outdoors. In measuring indoor distance using Beacon, RSSI (Received Signal Strength Indication) is considered as the one of the key factors, however, it is influenced by various environmental factors so that it causes the huge gap between the estimated distance and the real. In order to handle this issue, we propose the adaptive ANN (Artificial Neural Network) based approach to measuring the exact distance using Beacon. First, we has carried out the preprocessing of the RSSI signals by applying the extended Kalman filter and the signal stabilization filter into decreasing the noise. Then, we suggest the multi-layered ANNs, each of which layer is learned by specific training data sets. The results showed an average error of 0.67m, a precision of 0.78.

A monopulse radar uncertainty study classified on target property (표적 특성에 따른 모노펄스 레이더 불확도 연구)

  • Jang, Yong-sik;Ryu, Chung-ho;Kim, Whan-woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.229-236
    • /
    • 2017
  • In general, an error budget of monopulse radar is proposed by manufacturer who assuming that all of external enviromental error resources such as multipath, glint, dynamic lag variation are removed. So until now, a measurement uncertainty of monopulse radar can be discussed including external enviromental error resources. In this paper, it is described that which kinds of error resource can effect on monopulse radar measurement uncertainty for different target property. To prove it experimentally, at first a simulation result is described assuming that all of external enviromental error resources are removed. It only includes receiver thermal noise. And then, monopulse radar measurement uncertainty estimation results tracking on calibration target which is fixed on specific position, calibration sphere which is moving slowly, weapon systems firing test which is moving fast are described quantitativly. All of these targets have different dynamic property.

Deep Learning-Based Human Motion Denoising (딥 러닝 기반 휴먼 모션 디노이징)

  • Kim, Seong Uk;Im, Hyeonseung;Kim, Jongmin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1295-1301
    • /
    • 2019
  • In this paper, we propose a novel method of denoising human motion using a bidirectional recurrent neural network (BRNN) with an attention mechanism. The corrupted motion captured from a single 3D depth sensor camera is automatically fixed in the well-established smooth motion manifold. Incorporating an attention mechanism into BRNN achieves better optimization results and higher accuracy than other deep learning frameworks because a higher weight value is selectively given to a more important input pose at a specific frame for encoding the input motion. Experimental results show that our approach effectively handles various types of motion and noise, and we believe that our method can sufficiently be used in motion capture applications as a post-processing step after capturing human motion.

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

Optimal Design of Gerotor with Combined Profiles (Three-Ellipse and Ellipse-Involute-Ellipse) Using Rotation and Translation Algorithm (회전이동 및 병진이동 알고리즘을 이용한 조합된 치형형상(3-타원 및 타원-인벌루트-타원)을 갖는 지로터의 최적설계)

  • Bae, Jun Ho;Lee, Ho Ryul;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.169-177
    • /
    • 2015
  • Because technology of the sintering process is highly advanced, the gerotor used in the internal gear pumps of vehicles has advantages for manufacturing complex profiles and obtaining durability and minimization. However, it has been necessary to continuously improve the flow rate and noise of internal gear pumps for better fuel efficiency. The existing rotor was designed using a translation algorithm. This caused a discontinuity of the rotor profile, which had adverse effects on the performance. In this study, to improve the discontinuity of the profile, a new design program using a rotation and translation algorithm was developed, and two types of combined multiple profiles (three-ellipses and ellipse 1-involute-ellipse 2) were generated. Then, the performances (flow, flow rate, specific sliding, and pressure angle) of these profiles were calculated. On the basis of the calculation results for the performances, optimal designs of the two types were carried out and verified by comparing their performances with those of the existing rotor profiles.

Recent Advances in Nuclear Medicine Imaging Instrumentation (핵의학 영상기기의 최근 진보)

  • Jung, Jin-Ho;Choi, Yong;Hong, Key-Jo;Min, Byung-Jun;Hu, Wei;Kang, Ji-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.98-111
    • /
    • 2008
  • This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical imagers will also be discussed.