• Title/Summary/Keyword: Species-specific

Search Result 2,732, Processing Time 0.032 seconds

Identification of Fish Species using Affine Transformation and Principal Component Analysis of Time-Frequency Images of Broadband Acoustic Echoes from Individual Live Fish (활어 개체어의 광대역 음향산란신호에 대한 시간-주파수 이미지의 어파인 변환과 주성분 분석을 이용한 어종식별)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.195-206
    • /
    • 2017
  • Joint time-frequency images of the broadband echo signals of six fish species were obtained using the smoothed pseudo-Wigner-Ville distribution in controlled environments. Affine transformation and principal component analysis were used to obtain eigenimages that provided species-specific acoustic features for each of the six fish species. The echo images of an unknown fish species, acquired in real time and in a fully automated fashion, were identified by finding the smallest Euclidean or Mahalanobis distance between each combination of weight matrices of the test image of the fish species to be identified and of the eigenimage classes of each of six fish species in the training set. The experimental results showed that the Mahalanobis classifier performed better than the Euclidean classifier in identifying both single- and mixed-species groups of all species assessed.

Feeding specificity and photosynthetic activity of Korean sacoglossan mollusks

  • Klochkova, Tatyana A.;Han, Jong-Won;Kim, Ju-Hyoung;Kim, Kwang-Young;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.25 no.4
    • /
    • pp.217-227
    • /
    • 2010
  • During feeding on algal cytoplasm, some sacoglossans are known to keep the chloroplasts photosynthetically active for days to months in their digestive cells. Korean sacoglossan mollusks containing functional chloroplasts were screened using an in vivo chlorophyll fluorescence measuring system (pulse amplitude modulation, PAM). We collected six sacoglossans feeding on siphonous and siphonocladous green algae (Elysia atroviridis, E. nigrocapitata, E. ornata, Ercolania boodleae, Placida dendritica, Stiliger sp.) and one feeding on ceramiaceaen algae (Stiliger berghi) and performed feeding experiments using 37 algal species. Three species of Elysia showed strong photosynthetic activity for months. However, P. dendritica maintained functional chloroplasts only for several hours after feeding. E. boodleae, S. berghi, and Stiliger sp. showed no photosynthetic activity in any circumstances. Among all species, E. nigrocapitata was capable to tolerate the longest period of starvation for over 4 months. Four 'solar powered' sacoglossans bonded avidly to their specific algal food. Each species attached to and consumed only one algal species when several algae were given together. While they occasionally consumed other algae after prolonged starvation, they always reverted to their specific algae when available.

Molecular Biology of Secondary Growth

  • Han, Kyung-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.45-57
    • /
    • 2001
  • Trees have the ability to undergo secondary growth and produce a woody body. This tree-specific growth is affected by the secondary vascular system and the developmental continuum of secondary phloem and xylem. Secondary growth is one of the most important biological processes on earth. Considering its economic and environmental significance, our knowledge of tree growth and development is surprisingly limited. Trees have received little attention as model species in plant science, as most Plant biology questions can be best addressed by using herbaceous model species, such as Arabidopsis. Furthermore, tree biology is difficult to study mainly due to the inherent problems of tree species, including large size, long generation time, large genome size, and recalcitrance to biotechnological manipulations. Despite all of this, one must rely on trees as models to study tree-specific questions, such as secondary growth, which cannot be studied effectively in non-woody model species. Recent advances in genomics technology provide a unique opportunity to overcome these inherent tree-related problems. Several groups, including our own, have been successful in studying the biology of wood formation with a variety of hardwood and softwood species. In this article, 1 first review the current understanding of tree growth and then discuss the recent attempts to fully explore and realize the potential of molecular biology as a tool for enhanced understanding of secondary growth.

  • PDF

Detection of Mycoplasma felis from the kenneled cats with pneumonia

  • Hong, Sunhwa;Lee, Hak-Yong;Kim, Tae-Wan;Kim, Okjin
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • Two cats were obtained from a cat kennel. Over the previous 7 days, the cats had shown cough, anorexia, depression and nasal discharge. In this study, the consensus PCR was able to detect successfully Mycoplasma species in nasal swab samples of the cats. To identify feline mycoplasma species from the lung tissue of the cats with pneumonia, Mycoplasma species-specific PCR reactions were conducted. As the results, we could identify M. felis by the positive amplified DNAs. On the other hand, we could not detect any positive reactions with the PCR reaction for M. arginini, M. canis, M. edwardii, M. cynos, M. gateae, M. maculosum, M. molared, M. opalescens, M. spumans and Mycoplasma HRC-689. In conclusion, we detected M. felis from the kenneled cats with pneumonia. We suggested that this consensus PCR would be useful and effective for monitoring Mycoplasma species in various kinds of animals including cats. The application of preceding consensus PCR before the species-specific PCRs may be the most recommended strategy for the identification of Mycoplasma spp.

Molecular Identification of Arbuscular Mycorrhizal Fungal Spores Collected in Korea

  • Lee, Jai-Koo;Park, Sang-Hyeon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Arbuscular mycorrhizas (AM) have mutualistic symbiosis with plants and thus efforts have been placed on application of these symbiotic relationships to agricultural and environmental fields. In this study, AM fungi were collected from 25 sites growing with 16 host plant species in Korea and cultured with Sorghum bicolor in greenhouse condition. AM fungal spores were extracted and identified using both morphological and molecular methods. Using morphological characters, total 15 morpho-speices were identified. DNA was extracted from single spore of AM fungi and a partial region on 18S rDNA was amplified using nested PCR with AM fungal specific primers AML1/AML2. A total of 36 18S rDNA sequences were analyzed for phylogenetic analysis and 15 groups of AM fungi were identified using both morphological and molecular data of spores. Among the species, 4 species, Archaeospora leptoticha, Scutellospora castanea, S. cerradensis, S. weresubiae were described for the first time in Korea and two species in Glomus and a species in Gigaspora were not identified. Morphological and molecular identification of AM fungal spores in this study would help identify AM fungal community colonizing roots.

Performance Assessment of Three Turfgrass Species, in Three Different Soil Types, and their Responses to Water Deficit in Reinforced Cells, Growing in the Urban Environment

  • Ow, L.F;Ghosh, S.;Chin, S.W.
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.338-347
    • /
    • 2015
  • Reinforcement cells are used to aid grass growth and taken together, this serves to extend greenery beyond the conventional spaces of lawns, tree pits, gardens, and parks, and is advantageous to urban cities since space for greening is often limited. Drought has variable effects on plant life and the resilience of turf to drought resistance also varies with species. Changes in photosynthetic ability were more pronounced for media rather than grass species. The media of sand without organic matter was found to be least suited for drought resistance. Normalized difference vegetation index (NDVI) and digital image analysis (DIA) data were generally in favour of Zoysia species as oppose to A. compressus. In A. compressus, selective traits such as, a more extensive root system and lower specific leaf area (SLA) were not an underlying factor that assisted this grass with enhanced drought resistance. Generally, WUE was found to be strongly related to plant characterises such as overall biomass, photosynthetic features as well as the lushness indexes, and specific leaf area. This study found a strong relationship between WUE and a suite of plant characteristics. These traits should serve as useful selection criteria for species with the ability to resist water stress.

Evolutionary and Functional Analysis of Korean Native Pig Using Single Nucleotide Polymorphisms

  • Lee, Jongin;Park, Nayoung;Lee, Daehwan;Kim, Jaebum
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.728-738
    • /
    • 2020
  • Time and cost-effective production of next-generation sequencing data has enabled the performance of population-scale comparative and evolutionary studies for various species, which are essential for obtaining the comprehensive insight into molecular mechanisms underlying species- or breed-specific traits. In this study, the evolutionary and functional analysis of Korean native pig (KNP) was performed using single nucleotide polymorphism (SNP) data by comparative and population genomic approaches with six different mammalian species and five pig breeds. We examined the evolutionary history of KNP SNPs, and the specific genes of KNP based on the uniqueness of non-synonymous SNPs among the used species and pig breeds. We discovered the evolutionary trajectory of KNP SNPs within the used mammalian species as well as pig breeds. We also found olfaction-associated functions that have been characterized and diversified during evolution, and quantitative trait loci associated with the unique traits of KNP. Our study provides new insight into the evolution of KNP and serves as a good example for a better understanding of domestic animals in terms of evolution and domestication using the combined approaches of comparative and population genomics.

An investigation of members of the tribe Ceramieae (Ceramiaceae, Rhodophyta) occurring on both the Mediterranean and Atlantic shores of Morocco

  • Hassoun, Mustapha;Wynne, Michael J.;Moussa, Hanaa;Salhi, Ghizlane;Zbakh, Hanaa;Riadi, Hassane;Kazzaz, Mohamed
    • ALGAE
    • /
    • v.33 no.3
    • /
    • pp.243-267
    • /
    • 2018
  • A taxonomic study was recently carried out on species of the tribe Ceramieae (Ceramiaceae, Rhodophyta), following an evaluation of previously published records and on the basis of field and laboratory investigations. In Morocco, the tribe is represented by 5 genera: Ceramium (21 taxa at specific and infraspecific levels), Gayliella (3 species), and by one species each of Centroceras, Corallophila and Microcladia. Among these, there are five new records for Morocco: Centroceras gasparrinii, Ceramium botryocarpum, Ceramium cingulatum, Ceramium echionotum var. mediterraneum, and Gayliella taylorii. The report of C. echionotum var. mediterraneum from the Atlantic coast of Morocco is one of the rare records from outside the Mediterranean. Ceramium ciliatum var. robustum and Ceramium codii are recorded for the first time from the Atlantic coast of Morocco. Centroceras clavulatum is excluded from Moroccan flora having been misidentified for C. gasparrinii. This paper summarizes the taxonomic characters of these species with images and presents a key for their identification. This report is the first detailed record of the species of the tribe Ceramieae for Morocco. As a result, the total number of taxa at both specific and infraspecific levels accepted in the tribe Ceramieae for Morocco, under current taxonomy and nomenclature, is 27.

Identification of Marker Nucleotides for the Molecular Authentication of Arisaematis Rhizoma Based on the DNA Barcode Sequences (천남성(天南星) 유전자 감별을 위한 DNA 바코드 분석 및 Marker Nucleotide 발굴)

  • Kim, Wook Jin;Lee, Young Mi;Ji, Yunui;Kang, Young Min;Choi, Goya;Kim, Ho Kyoung;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.35-43
    • /
    • 2014
  • Objectives : Official Arisaematis Rhizoma is described only three species, Arisaema amurnse, Arisaema erubescens, and Arisaema heterophyllum, in national Pharmacopoeia. However, other Arisaema species, Arisaema ringens, Arisaema takesimense and Arisaema serratum, also have been distributed as an inauthentic Arisaematis Rhizoma in the herbal market. To develop a reliable molecular authentication method for Arisaematis Rhizoma in species level, we analyzed DNA barcode regions using six Arisaema species. Methods : Thirty-eight samples of six Arisaema plants species (A. amurense, A. amurense f. serratum, A. heterophyllum, A. takesimense, and A. serratum) were collected from different habitate and nucleotide sequences of DNA barcode regions (rDNA-ITS, matK, and rbcL gene) were analyzed after PCR amplification. The species-specific sequences and phylogenetic relations were estimated using entire sequences of three DNA barcodes based on the analysis of ClastalW and UPGMA, respectively. Results : The comparative analysis of DNA barcode sequences were revealed inter-species specific nucleotides to distinguish the medicinal plant of Arisaema Rhizoma in species levels excluding between A. amurense and its subspecies (A. amurense f. serratum) and A. takesimense and A. serratum, respectively. However, we obtained sequence differences enough to discriminate authentic and inauthentic Arisaematis Rhizoma. Therefore, we suggest that these SNP type molecular genetic markers were an reliable method avaliable to identify official herbal medicines. Conclusions : These marker nucleotides could be useful to identify the official herbal medicines by providing definitive information that can identify original medicinal plant and distinguish from inauthentic adulterants and substitutes.

Discrimination of Species Specific DNA Markers Using RAPD and AFLP Analysis between Atractylodes japonica Koidz. and Atractylodes macrocephala Koidz.

  • Bang, Kyong-Hwan;Park, Chun-Geon;Jin, Dong-Chun;Kim, Hong-Sig;Park, Hee-Woon;Park, Chung-Heon;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.4
    • /
    • pp.268-273
    • /
    • 2003
  • To identify the variation of the RAPD patterns between two Atractylodes species, 52 kinds of random primers were applied to each eight of A japonica and A. macrocephala genomic DNA. Ten primers of 52 primers could be used to discriminate between the species and 18 polymorphisms among 67 scored DNA fragments (18 fragments are specific for A. japonica and A. macrocephala) were generated using these primers, 26.9% of which were polymorphic. RAPD data from the 10 primers was used for cluster analysis. The cluster analysis of RAPD markers showed that the two groups are genetically distinct. On the other hand, to identify the variation of the AFLP patterns and select the species specific AFLP markers, eight combinations of EcoRI/MseI primers were applied to the bulked A. japonica and A. macrocephala genomic DNA. Consequently, three combinations of EcoRI/MseI primers (EcoRI /Mse I ; AAC/CTA, AAC/CAA, AAG/CTA) used in this study revealed 176 reliable AFLP markers, 42.0% of which were polymorphic. 74 polymorphisms out of 176 scored DNA fragments were enough to clearly discriminate between two Atractylodes species.