Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0040

Evolutionary and Functional Analysis of Korean Native Pig Using Single Nucleotide Polymorphisms  

Lee, Jongin (Department of Biomedical Science and Engineering, Konkuk University)
Park, Nayoung (Department of Biomedical Science and Engineering, Konkuk University)
Lee, Daehwan (Department of Biomedical Science and Engineering, Konkuk University)
Kim, Jaebum (Department of Biomedical Science and Engineering, Konkuk University)
Abstract
Time and cost-effective production of next-generation sequencing data has enabled the performance of population-scale comparative and evolutionary studies for various species, which are essential for obtaining the comprehensive insight into molecular mechanisms underlying species- or breed-specific traits. In this study, the evolutionary and functional analysis of Korean native pig (KNP) was performed using single nucleotide polymorphism (SNP) data by comparative and population genomic approaches with six different mammalian species and five pig breeds. We examined the evolutionary history of KNP SNPs, and the specific genes of KNP based on the uniqueness of non-synonymous SNPs among the used species and pig breeds. We discovered the evolutionary trajectory of KNP SNPs within the used mammalian species as well as pig breeds. We also found olfaction-associated functions that have been characterized and diversified during evolution, and quantitative trait loci associated with the unique traits of KNP. Our study provides new insight into the evolution of KNP and serves as a good example for a better understanding of domestic animals in terms of evolution and domestication using the combined approaches of comparative and population genomics.
Keywords
domestication; evolution; Korean native pig; single nucleotide polymorphism;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., and Abecasis, G.R. (2015). A global reference for human genetic variation. Nature 526, 68-74.   DOI
2 Capella-Gutierrez, S., Silla-Martinez, J.M., and Gabaldon, T. (2009). trimAl:a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973.   DOI
3 Chen, L., Qiu, Q., Jiang, Y., Wang, K., Lin, Z., Li, Z., Bibi, F., Yang, Y., Wang, J., Nie, W., et al. (2019). Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202.   DOI
4 de Koning, D.J., Pong-Wong, R., Varona, L., Evans, G.J., Giuffra, E., Sanchez, A., Plastow, G., Noguera, J.L., Andersson, L., and Haley, C.S. (2003). Full pedigree quantitative trait locus analysis in commercial pigs using variance components. J. Anim. Sci. 81, 2155-2163.   DOI
5 DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491-498.   DOI
6 Edea, Z. and Kim, K.S. (2014). A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds. J. Anim. Sci. Technol. 56, 23.   DOI
7 Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797.   DOI
8 Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B., Korninger, F., May, B., et al. (2018). The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649-D655.   DOI
9 Falker-Gieske, C., Blaj, I., Preu$\ss$, S., Bennewitz, J., Thaller, G., and Tetens, J. (2019). GWAS for meat and carcass traits using imputed sequence level genotypes in pooled F2-designs in pigs. G3 (Bethesda) 9, 2823-2834.   DOI
10 Farris, J.S. (1970). Methods for computing Wagner trees. Syst. Zool. 19, 83-92.   DOI
11 Reimand, J., Arak, T., Adler, P., Kolberg, L., Reisberg, S., Peterson, H., and Vilo, J. (2016). g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 44, W83-W89.   DOI
12 Naval-Sanchez, M., Nguyen, Q., McWilliam, S., Porto-Neto, L.R., Tellam, R., Vuocolo, T., Reverter, A., Perez-Enciso, M., Brauning, R., Clarke, S., et al. (2018). Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat. Commun. 9, 859.   DOI
13 Nguyen, D.T., Lee, K., Choi, H., Choi, M.K., Le, M.T., Song, N., Kim, J.H., Seo, H.G., Oh, J.W., Lee, K., et al. (2012). The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome. BMC Genomics 13, 584.   DOI
14 Fitch, W.M. (1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406-416.   DOI
15 Giuffra, E., Kijas, J.M., Amarger, V., Carlborg, O., Jeon, J.T., and Andersson, L. (2000). The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785-1791.   DOI
16 O'Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733-D745.   DOI
17 Paszek, A.A., Wilkie, P.J., Flickinger, G.H., Miller, L.M., Louis, C.F., Rohrer, G.A., Alexander, L.J., Beattie, C.W., and Schook, L.B. (2001). Interval mapping of carcass and meat quality traits in a divergent swine cross. Anim. Biotechnol. 12, 155-165.   DOI
18 Raney, B.J., Dreszer, T.R., Barber, G.P., Clawson, H., Fujita, P.A., Wang, T., Nguyen, N., Paten, B., Zweig, A.S., Karolchik, D., et al. (2014). Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics 30, 1003-1005.   DOI
19 Sachs, D.H. and Galli, C. (2009). Genetic manipulation in pigs. Curr. Opin. Organ Transplant. 14, 148-153.   DOI
20 Gordon, L., Yang, S., Tran-Gyamfi, M., Baggott, D., Christensen, M., Hamilton, A., Crooijmans, R., Groenen, M., Lucas, S., Ovcharenko, I., et al. (2007). Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions. Genome Res. 17, 1603-1613.   DOI
21 Grindflek, E., Szyda, J., Liu, Z., and Lien, S. (2001). Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm. Genome 12, 299-304.   DOI
22 Groenen, M.A., Archibald, A.L., Uenishi, H., Tuggle, C.K., Takeuchi, Y., Rothschild, M.F., Rogel-Gaillard, C., Park, C., Milan, D., Megens, H.J., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393-398.   DOI
23 Haeussler, M., Zweig, A.S., Tyner, C., Speir, M.L., Rosenbloom, K.R., Raney, B.J., Lee, C.M., Lee, B.T., Hinrichs, A.S., Gonzalez, J.N., et al. (2019). The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 47, D853-D858.   DOI
24 Harris, R.S. (2007). Improved pairwise alignment of genomic DNA. Ph.D. thesis in Computer Science and Engineering (State College: The Pennsylvania State University).
25 Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E.M., and Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308-311.   DOI
26 Hocquette, J.F., Gondret, F., Baeza, E., Medale, F., Jurie, C., and Pethick, D.W. (2010). Intramuscular fat content in meat-producing animals:development, genetic and nutritional control, and identification of putative markers. Animal 4, 303-319.   DOI
27 Horodyska, J., Wimmers, K., Reyer, H., Trakooljul, N., Mullen, A.M., Lawlor, P.G., and Hamill, R.M. (2018). RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies differences in immune response, growth, and macronutrient and connective tissue metabolism. BMC Genomics 19, 791.   DOI
28 Hu, Z.L., Park, C.A., and Reecy, J.M. (2019). Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 47, D701-D710.   DOI
29 Sanchez, M.P., Iannuccelli, N., Basso, B., Bidanel, J.P., Billon, Y., Gandemer, G., Gilbert, H., Larzul, C., Legault, C., Riquet, J., et al. (2007). Identification of QTL with effects on intramuscular fat content and fatty acid composition in a Duroc x Large White cross. BMC Genet. 8, 55.   DOI
30 Sang, Y., Bergkamp, J., and Blecha, F. (2014). Molecular evolution of the porcine type I interferon family: subtype-specific expression and antiviral activity. PLoS One 9, e112378.   DOI
31 Turnbull, C., Scott, R.H., Thomas, E., Jones, L., Murugaesu, N., Pretty, F.B., Halai, D., Baple, E., Craig, C., Hamblin, A., et al. (2018). The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ 361, k1687.
32 Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., et al. (2013). From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1-11.10.33.
33 Vieira, F.G. and Rozas, J. (2011). Comparative genomics of the odorantbinding and chemosensory protein gene families across the Arthropoda:origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 3, 476-490.   DOI
34 Vincent, A., Louveau, I., Gondret, F., Lebret, B., and Damon, M. (2012). Mitochondrial function, fatty acid metabolism, and immune system are relevant features of pig adipose tissue development. Physiol. Genomics 44, 1116-1124.   DOI
35 Kim, H., Song, K.D., Kim, H.J., Park, W., Kim, J., Lee, T., Shin, D.H., Kwak, W., Kwon, Y.J., Sung, S., et al. (2015). Exploring the genetic signature of body size in Yucatan miniature pig. PLoS One 10, e0121732.   DOI
36 Karst, S., Cheng, R., Schmitt, A.O., Yang, H., de Villena, F.P., Palmer, A.A., and Brockmann, G.A. (2011). Genetic determinants for intramuscular fat content and water-holding capacity in mice selected for high muscle mass. Mamm. Genome 22, 530-543.   DOI
37 Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M. (2019). New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590-D595.   DOI
38 Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., and Haussler, D. (2002). The human genome browser at UCSC. Genome Res. 12, 996-1006.   DOI
39 Kinsella, R.J., Kahari, A., Haider, S., Zamora, J., Proctor, G., Spudich, G., Almeida-King, J., Staines, D., Derwent, P., Kerhornou, A., et al. (2011). Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011, bar030.   DOI
40 Kim, K.S. and Choi, C.B. (2002). Genetic structure of Korean native pig using microsatellite markers. Korean J. Genet. 24, 1-7.
41 Kumar, S., Stecher, G., Suleski, M., and Hedges, S.B. (2017). TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812-1819.   DOI
42 Kwon, D., Lee, D., Kim, J., Lee, J., Sim, M., and Kim, J. (2018). INTERSPIA: a web application for exploring the dynamics of protein-protein interactions among multiple species. Nucleic Acids Res. 46, W89-W94.   DOI
43 Zerbino, D.R., Achuthan, P., Akanni, W., Amode, M.R., Barrell, D., Bhai, J., Billis, K., Cummins, C., Gall, A., Giron, C.G., et al. (2018). Ensembl 2018. Nucleic Acids Res. 46, D754-D761.   DOI
44 Wang, J., Yan, X.L., Liu, R., Fu, Q.Q., Zhou, G.H., and Zhang, W.G. (2016). Differences in calpain system, desmin degradation and water holding capacity between commercial Meishan and Duroc ${\times}$ Landrace ${\times}$ Yorkshire crossbred pork. Anim. Sci. J. 87, 109-116.   DOI
45 Watanabe, G., Motoyama, M., Nakajima, I., and Sasaki, K. (2018). Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin. Asian-Australas. J. Anim. Sci. 31, 914-918.   DOI
46 Yang, Z. (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555-556.
47 Zhu, Y., Li, W., Yang, B., Zhang, Z., Ai, H., Ren, J., and Huang, L. (2017). Signatures of selection and interspecies introgression in the genome of Chinese domestic pigs. Genome Biol. Evol. 9, 2592-2603.   DOI
48 Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., and Ruden, D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80-92.   DOI
49 Cho, I.C., Yoo, C.K., Lee, J.B., Jung, E.J., Han, S.H., Lee, S.S., Ko, M.S., Lim, H.T., and Park, H.B. (2015). Genome-wide QTL analysis of meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Genet. Sel. Evol. 47, 7.   DOI
50 Choi, J.W., Chung, W.H., Lee, K.T., Cho, E.S., Lee, S.W., Choi, B.H., Lee, S.H., Lim, W., Lim, D., Lee, Y.G., et al. (2015). Whole-genome resequencing analyses of five pig breeds, including Korean wild and native, and three European origin breeds. DNA Res. 22, 259-267.   DOI
51 da Silva, E.C., de Jager, N., Burgos-Paz, W., Reverter, A., Perez-Enciso, M., and Roura, E. (2014). Characterization of the porcine nutrient and taste receptor gene repertoire in domestic and wild populations across the globe. BMC Genomics 15, 1057.   DOI
52 Daetwyler, H.D., Capitan, A., Pausch, H., Stothard, P., van Binsbergen, R., Brondum, R.F., Liao, X., Djari, A., Rodriguez, S.C., Grohs, C., et al. (2014). Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46, 858-865.   DOI
53 Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al. (2011). The variant call format and VCFtools. Bioinformatics 27, 2156-2158.   DOI
54 Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993.   DOI
55 Lee, D., Cho, M., Hong, W.Y., Lim, D., Kim, H.C., Cho, Y.M., Jeong, J.Y., Choi, B.H., Ko, Y., and Kim, J. (2016). Evolutionary analyses of Hanwoo (Korean cattle)-specific single-nucleotide polymorphisms and genes using wholegenome resequencing data of a Hanwoo population. Mol. Cells 39, 692-698.   DOI
56 Lee, D., Lim, D., Kwon, D., Kim, J., Lee, J., Sim, M., Choi, B.H., Choi, S.G., and Kim, J. (2017). Functional and evolutionary analysis of Korean bob-tailed native dog using whole-genome sequencing data. Sci. Rep. 7, 17303.   DOI
57 Davoli, R. and Braglia, S. (2007). Molecular approaches in pig breeding to improve meat quality. Brief. Funct. Genomic. Proteomic. 6, 313-321.   DOI
58 Lee, K.T., Lee, Y.M., Alam, M., Choi, B.H., Park, M.R., Kim, K.S., Kim, T.H., and Kim, J.J. (2012a). A whole genome association study on meat quality traits using high density SNP chips in a cross between Korean native pig and Landrace. Asian-Australas. J. Anim. Sci. 25, 1529-1539.   DOI
59 Lee, T.H., Guo, H., Wang, X., Kim, C., and Paterson, A.H. (2014). SNPhylo:a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15, 162.   DOI
60 Lee, Y.M., Alam, M., Choi, B.H., Kim, K.S., and Kim, J.J. (2012b). A whole genome association study to detect single nucleotide polymorphisms for blood components (immunity) in a cross between Korean native pig and Yorkshire. Asian-Australas. J. Anim. Sci. 25, 1674-1680.   DOI
61 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, https://arxiv.org/abs/1303.3997v2
62 Li, M., Chen, L., Tian, S., Lin, Y., Tang, Q., Zhou, X., Li, D., Yeung, C.K.L., Che, T., Jin, L., et al. (2017). Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res. 27, 865-874.   DOI