• Title/Summary/Keyword: Species-specific

Search Result 2,694, Processing Time 0.034 seconds

Rapid Identification of Bifidobacteria in Dairy Products by Gene-targeted Species-specific PCR Technique and DGGE

  • Hong, Wei-Shung;Chen, Ming-Ju
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1887-1894
    • /
    • 2007
  • In this paper, a rapid and reliable gene-targeted species-specific polymerase chain reaction (PCR) technique based on a two-step process was established to identify bifidobacteria in dairy products. The first step was the PCR assay for genus Bifidobacterium with genus specific primers followed by the second step, which identified the species level with species-specific primer mixtures. Ten specific primer pairs, designed from nucleotide sequences of the 16-23S rRNA region, were developed for the Bifidobacterium species including B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. infantis, B. longum, B. minimum, B. subtile, and B. thermophilum. This technique was applied to the identification of Bifidobacterium species isolated from 6 probiotic products, and four different Bifidobacterium spp. (B. bifidum, B. longum, B. infantis, and B. breve) were identified. The findings indicated that the 16S-23S rDNA gene-targeted species-specific PCR technique is a simple and reliable method for identification of bifidobacteria in probiotic products. PCR combined with Denaturing Gradient Gel Electrophoresis (DGGE) for identification of the bifidobacteria was also evaluated and compared with the gene-targeted species-specific technique. Results indicated that for fermented milk products consistency was found for both species-specific PCR and PCR-DGGE in detecting species. However, in some lyophilized products, the bands corresponding to these species were not visualized in the DGGE profile but the specific PCR gave a positive result.

Selection of PCR Markers and Its Application for Distinguishing Dried Root of Three Species of Angelica

  • Jin, Dong-Chun;Sung, Jung-Sook;Bang, Kyong-Hwan;In, Dong-Su;Kim, Dong-Hwi;Park, Hee-Woon;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2005
  • An analysis of RAPD-PCR (random amplified polymorphic DNA-polymerase chain reaction) was performed with three Angelica species (A. gigas Nakai, A. sinensis (Olive.) Diels and A. acutiloba Kitag) in an effort to distinguish between members of these three species. Two arbitrary primers (OPC02, OPD11) out of80 primers tested, produced 17 species-specific fragments among the three species. Eight fragments were specific for A. sinensis, four fragments specific for A. gigas, five specific for A. acutiloba. When primers OPC02 and OPD11 were used in the polymerase chain reaction, RAPD-PCR fragments that were specific for each of the three species were generated simultaneously. Primer OPC02 produced eight species-specific fragments: four were specific for A. sinensis, one for A. gigas, and three for A. acutiloba. Primer OPD11 produced nine speciesspecific fragments: four for A. sinensis, three for A. gigas, and two for A. acutiloba. The RAPD-PCR markers that were generated with these two primers should rapidly identify members of the three Angelica species. The consistency of the identifications made with these species-specific RAPD-PCR markers was demonstrated by the observation that each respective marker was generated from three accessions of each species, all with different origins. We also performed the RAPD-PCR analysis with the dried Angelica root samples that randomly collected from marketed and from the OPC02 primer, obtained a A. gigasspecific band and the band were cloned and sequenced.

Development of Species-Specific PCR Primers for the Rapid and Simultaneous Identification of the Six Species of Genus Takifugu

  • Dong, Chun Mae;Park, Yeon Jung;Noh, Jae Koo;Noh, Eun Soo;An, Cheul Min;Kang, Jung-Ha;Park, Jung Youn;Kim, Eun-Mi
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2019
  • Pufferfish (Takifugu spp.) are economically important edible marine fish. Mistakes in pufferfish classification can lead to poisoning; therefore, accurate species identification is critical. In this study, we used the mtDNA cytochrome c oxidase subunit I gene (COI) to design specific primers for six Takifugu species among the 21 domestic or imported pufferfish species legally sold for consumption in Korea. We rapidly and simultaneously identified these pufferfish species using a highly efficient, multiplex polymerase chain reaction (PCR) system with the six species-specific primers. The results showed that species-specific multiplex PCR (multiplex species-specific polymerase chain reaction; MSS-PCR) either specifically amplified PCR products of a unique size or failed. MSS-PCR yielded amplification fragment lengths of 897 bp for Takifugu pardalis, 822 bp for T. porphyreus, 667 bp for T. niphobles, 454 bp for T. poecilonotus, 366 bp for T. rubripes, and 230 bp for T. xanthpterus using the species-specific primers and a control primer (ca. 1,200 bp). We visualized the results using agarose gel electrophoresis to obtain accurate contrasts of the six Takifugu species. MSS-PCR analysis is easily performed and provides identification results within 6 h. This technique is a powerful tool for the discrimination of Takifugu species and will help prevent falsified labeling, protect consumer rights, and reduce the risk of pufferfish poisoning..

Identification of eleven species of the Pleuronectidae family using DNA-based techniques

  • Eun-Mi Kim;Mi Nan Lee;Chun-Mae Dong;Eun Soo Noh;Young-Ok Kim
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.11
    • /
    • pp.678-688
    • /
    • 2023
  • Flatfish are one of the largest families in the order Pleuronectiformes and are economically important edible marine fish species. However, they have similar morphological characteristics leading to challenges in classifying correctly, which may result in mislabeling and illegal sales, such as fraudulent labeling of processed food. Therefore, accurate identification is important to ensure the quality and safety of domestic markets in Korea. Species-specific primers were prepared from the mainly consumed eleven species of the order Pleuronectiformes. To rapidly identify the 11 flatfish species, a highly efficient, rapid, multiplex polymerase chain reaction (PCR) with species-specific primers was developed. Species-specific primer sets were designed for the mitochondrial DNA cytochrome c oxidase subunit I gene. Species-specific multiplex PCR (MSS-PCR) either specifically amplified a PCR product of a unique size or failed. This MSS-PCR analysis is easy to perform and yields reliable results in less time than the previous Sanger sequencing methods. This technique could be a powerful tool for the identification of the 11 species b the family Pleuronectidae and can contribute to the prevention of falsified labeling and protection of consumer rights.

Development and Application of PCR-Based Weissella Species Detection Method with recN Gene Targeted Species-Specific Primers (RecN 유전자 특이적 PCR을 이용한 Weissella 속 유산균의 검출법 개발 및 적용)

  • Lee, Myeong-Jae;Cho, Kyeung-Hee;Han, Eung-Soo;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.70-76
    • /
    • 2011
  • PCR-based Weissella species-specific detection method was developed to apply for the discrimination of Korean and Chinese kimchi by detecting a Weissella species only found in Korean or Chinese kimchi. PCR primers were designed from the species-specific sequence in the recN gene of each species. The primers allowed the species-specific detection and identification of nine species in the genera Weissella, and were successfully applied to the detection of W. cibaria, W. confusa, W. koreensis, and W. soli in kimchi with 20 ng template DNA. W. cibaria, W. confusa, and W. koreensis were detected from the Korean kimchi samples tested but W. soli was not detected. However, the four species were detected from Chinese kimchi samples. PCR-based W. soli-specific detection could not be perfectly applied as the Chinese kimchi discriminating method but has significance as an approach to evaluate the potential of scientific verification method based on the difference of microbial community.

Practical Use of DNA Polymorphisms in the Avian Immunoglobulin Light Chain Constant Domain for Species-specific PCR (조류의 종 특이 구별을 위한 항체 유전자의 이용)

  • Choi, J.W.;Kang, S.J.;Park, M.S.;Kim, J.-K.;Han, J.Y.
    • Journal of Animal Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.9-18
    • /
    • 2008
  • Species-specific polymorphisms in chicken, pheasant, turkey, and quail were identified by cloning and sequencing of the immunoglobulin constant domain (IgLC). A set of species-specific primers were then designed on the basis of polymorphisms in the IgLC between species, as well as two additional sets of primers for the cytochrome b and tapasin genes, for the purpose of species identification. Together, the primers successfully distinguished specific species from chicken by species-specific PCR. This simple but unambiguous method may be used to screen avian inter-species germline chimeras, which are valuable models for the conservation of endangered species.

Tree Species Preference and Inter-specific Difference of Foraging Maneuver, Trees and Location among Four Canopy-dwelling Birds at High-elevation Temperate Deciduous Forest in Mt. Jumbongsan

  • Park, Chan-Ryul
    • Animal cells and systems
    • /
    • v.9 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • This study was conducted to reveal tree species preference and inter-specific difference of foraging behavior among four canopy-dwelling birds at forest dominated by Quercus mongolica, Acer pseudosieboldian and Carpinus cordata at 1,000 meters above sea level during breeding season of birds from 1995 to 1997 in Mt. Jumbongsan. Breeding birds were about 25 species and dominant birds were Erithacus cyane, Parus ater and Parus palustris. A relatively high number of bush-nesters can be a characteristic of breeding bird community at study area. Three gleaners (Tits, P. varius, P. palustris and P. ater) selectively preferred the trees irrespective of dominant tree species, whereas bark foragers (Nuthatch, Sitta europaea) utilized the dominant trees. The four birds showed significant inter-specific difference in use of foraging location, but the three tits did not show significant inter-specific difference in use of foraging maneuver and trees. Closely related tits may coexist with each other by inter-specific different use of foraging location determined by foliage structure and leaf arrangement.

Use of 16S-23S rRNA Intergenic Spacer Region for Species-specific Primer Developed of Vibrio Ichthyoenteri (16S-23S rRNA Intergenic Spacer Region을 이용한 Vibrio ichthyoenteri Species-specific Primer 개발)

  • Moon Young-Gun;Heo Moon-Soo
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Two bacterial isolates obtained from rotifer and diseased olive flounder larvae, Paralichthys olivaceus, were identified as Vibrio ichthyoenteri based on the results of phenotypic characterization. In an attempt to develop rapid PCR method for the detection of V. ichthyoenteri, we examined the 16S-23S rRNA intergenic spacer region(ISR) of V. ichthyoenteri and developed species-specific primer for V. ichthyoenteri. Analysis of the ISR sequences showed that V. ichthyoenteri contains one type of polymorphic ISRs. The size of ISRs was 348 bp length and did not contain tRNA genes. Mutiple alignment of representative sequences from different V. species revealed several domains of high sequence variability, and allowed to design species-specific primer for detection of V. ichthyoenteri. The specificity of the primer was examined using genomic DNA prepared from 19 different V. species, isolated 18group Vibrio species and most similar sequence of other known Vibrio species. The results showed that the PCR reaction using species-specific primer designed in this study can be used to detect V. ichthyoenteri.

Development of Streptococcus sanguinis-, Streptococcus parasanguinis-, and Streptococcus gordonii-PCR Primers Based on the Nucleotide Sequences of Species-specific DNA Probes Screened by Inverted Dot Blot Hybridization

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.38 no.2
    • /
    • pp.43-49
    • /
    • 2013
  • The objective of this study was to develop PCR primers that are specific for Streptococcus sanguinis, Streptococcus parasanguinis, and Streptococcus gordonii. We designed the S. sanguinis-, S. parasanguinis-, and S. gordonii-specific primers, Ssa21-F3/Ssa21-R2, Spa17-F/Spa17-R, and Sgo41-F1/Sgo41-R1 respectively, based on the nucleotide sequences of the Ssa21, Spa17, and Sgo41 DNA probes that were screened using inverted dot blot hybridization (IDBH). The species-specificity of these primers was assessed against 43 strains of mitis group streptococci, including clinical strains of S. sanguinis, S. parasanguinis, and S. gordonii. The resulting PCR data revealed that species-specific amplicons had been obtained from all strains of the target species tested, and that none of these amplicons occurred in any other strains from other species. These results suggest that the Ssa21-F3/Ssa21-R2, Spa17-F/Spa17-R, and Sgo41-F1/Sgo41-R1 primers may be useful in detecting S. sanguinis, S. parasanguinis, and S. gordonii at the species level, respectively.

Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

  • Back, Chang-Gi;Lee, Seung-Yeol;Lee, Boo-Ja;Yea, Mi-Chi;Kim, Sang-Mok;Kang, In-Kyu;Cha, Jae-Soon;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.212-218
    • /
    • 2015
  • In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP), X. hyacinthi (XH) and X. campestris pv. zantedeschiae (XCZ), based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of $1pg/{\mu}l$ per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.