• 제목/요약/키워드: Species sensitivity distribution

검색결과 49건 처리시간 0.031초

LED 광원에 대한 암순응시 볼락 (Sebastes inermis)의 시각 스펙트럼 민감도 (Visual spectral sensitivity of dark-adapted rockfish (Sebastes inermis) in LED light source)

  • 허민아;강경미;신현옥
    • 수산해양기술연구
    • /
    • 제51권1호
    • /
    • pp.102-110
    • /
    • 2015
  • The characteristics of aquatic light fields are generally reflected in the visual systems of fishes inhabiting them. Therefore, research on light sensitivity of fish is useful to explain the correlation between the visual function and habitat, behavior and distribution of fish. Rockfish is an important species in coastal ecology and also one of the main species for culturing in Korea. To make a contribution on the maintenance of the fish resources and understanding the ecology of the rockfish, the visual spectral sensitivities of the dark-adapted rockfishes were measured in the range of visible light (405~660 nm) using a light source of light-emitting diodes (LEDs). In order to assess electrophysiological response of the fish, the ERGs (electroretinograms) of the dark-adapted rockfishes were recorded on a data logger (12 bits) and a laptop computer. Juvenile (n=5; weight: $20.3{\pm}5.2g$; total length: $10.3{\pm}0.7cm$) and adult (n=5; weight: $87.8{\pm}21.8g$; total length: $18.1{\pm}1.3cm$) rockfishes were used in experiment. The visual threshold of juvenile and adult rockfish were 11.66 (log quanta/$cm^2/s$) and 11.81 (log quanta/$cm^2/s$) in 574 nm, respectively. The peak wavelength of the spectral sensitivity in the dark-adapted juvenile and adult rockfish was commonly 551 nm (series of green color). Collectively, these results demonstrate that the rockfish has suitable visual capabilities for inhabiting coastal water in Korea.

236U accelerator mass spectrometry with a time-of-flight and energy detection system

  • Li Zheng;Hiroyuki Matsuzaki;Takeyasu Yamagata
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4636-4643
    • /
    • 2022
  • A time-of-flight and energy (TOF-E) detection system for the measurement of 236U accelerator mass spectrometry (AMS) has been developed to improve the 236U/238U sensitivity at Micro Analysis Laboratory, Tandem accelerator (MALT), The University of Tokyo. With observing TOF distribution of 235U, 236U and 238U, this TOF-E detection system has clearly separated 236U from the interference of 235U and 238U when measuring three kinds of uranium standards. In addition, we have developed a novel method combining kernel-based density estimation method and multi-Gaussian fitting method to estimate the 236U/238U sensitivity of the TOF-E detection system. Using this new estimation method, 3.4 × 10-12 of 236U/238U sensitivity and 1.9 ns of time resolution are obtained. 236U/238U sensitivity of TOF-E detection system has improved two orders of magnitude better than that of previous gas ionization chamber. Moreover, unknown species other than uranium isotopes were also observed in the measurement of a surface soil sample, which has demonstrated that TOF-E detection system has a higher sensitivity in particle identification. With its high sensibility in mass determination, this TOF-E detection system could also be used in other heavy isotope AMS.

한반도의 고산과 아고산의 지생태 (The Alpine and Subalpine Geoecology of the Korean Peninsula)

  • 공우석
    • The Korean Journal of Ecology
    • /
    • 제21권4호
    • /
    • pp.383-387
    • /
    • 1998
  • the geoecology of the alpine and subalpine belts of the Korean Peninsula, its component plant group, its environmental history, and climatic amplitudes of the arctic-alpine and alpine plants has reviewed and discussed. The present-day alpine and subalpine landscapes are likely to have been formed during the post-glacial warming phase. The disjunctive distribution of many alpine and subalpine plants, however, suggests a former continuous distribution of these both locally and on a broader, and the subsequent breakdown of a former continuous range into fragments as the climate ameliorated during the post-glacial warming phase. The presences of numerous arctic-alpine and alpine plants on the alpine and subalpine belts of the Korean Peninsula, are mainly their relative degree of sensitivity to high summer temperatures. The continued survivals of alpine species and landscape in Korea is in danger if global warming associated the greenhouse effect takes place.

  • PDF

이산화탄소 증가로 인한 해수 산성화가 해양생물에 미치는 영향평가 및 생태영향기준 도출 (Effect Assessment and Derivation of Ecological Effect Guideline on CO2-Induced Acidification for Marine Organisms)

  • 김병모;최태섭;이정석;박영규;강성길;전의찬
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권2호
    • /
    • pp.153-165
    • /
    • 2014
  • 이산화탄소 포집 및 저장기술(CCS: Carbon dioxide Capture and Storage)은 이산화탄소($CO_2$: Carbon dioxide)를 저감하여 기후변화에 대응하는 방법의 하나로 인식되고 있다. 국내에서는 해양지중저장을 통해 $CO_2$의 영구적인 격리를 목표로 연구를 진행하고 있다. 하지만, 이론적으로 안전한 해저 지층구조에 이산화탄소를 저장한다하더라도 CCS 사업과정 또는 중장기적인 지질학적 구조 변형으로 인해 저장된 $CO_2$가 해양환경으로 누출 될 가능성이 존재하기 때문에 CCS 사업 추진과정에서 환경 및 생태계 안전에 대하여 많은 관심을 기울여야한다. 만약에 $CO_2$의 누출이 발생할 경우 일차적으로 해수 및 해양퇴적물 내 공극수의 pH를 낮추게 될 것이며, 이로 인해 해양 생물은 부정적인 영향을 받을 수 있다. 따라서 해양생태계를 보호하고 안전한 해양지중저장을 위해서는 이산화탄소에 노출된 해양생물의 영향 정도를 파악하고, 정량적인 생태위해성평가를 통해 합리적인 생태영향기준을 마련하는 것이 CCS 기술의 실용화를 위해서 매우 중요한 요소라 할 수 있다. 이러한 배경하에서 본 연구에서는 누출된 $CO_2$로부터 해양생태계 보호를 위한 생태영향기준 마련을 위해 $CO_2$ 노출에 따른 생물영향 자료를 기반으로 종민감도분포(SSD: Species Sensitivity Distribution)를 이용해 해양생물보호를 위한 pH 변화수준(${\delta}pH$)을 추정하여 정량적 생태위해성평가 기반의 잠정기준을 도출하였다. 정량적 생태위해성평가를 위한 생물영향자료는 미생물, 갑각류, 극피동물, 연체동물, 환형동물, 어류 등 다양한 해양생물에 대한 $CO_2$ 노출영향 평가연구자료를 비교 분석하여 확보하였다. 해양생물에 대한 $CO_2$ 노출영향 pH 범위는 6.61~8.22 이었으며, 수집된 자료로부터 무영향관찰농도(NOEC: No Observed Effect Concentrations)를 추정하고 종민감도분포를 이용하여 상위 95%의 생물종을 보호할 수 있는 ${\delta}pH$ 0.137을 추정하였다. 추정된 ${\delta}pH$는 불확실성을 고려하여 평가계수(assessment factor)를 이용하여 보정하거나, 보정없이 생태영향기준(pH 변화수준)으로 활용될 수 있을 것으로 기대한다. 다만 본 연구에 활용된 생물영향자료가 국내 서식생물 또는 $CO_2$ 저장후보지의 지역 특이적인 생물에 대한 자료가 충분하지 않아 명확한 안전수준으로 활용되기에는 제한될 수 있을 것으로 판단된다. 추후 생물영양단계 및 지역특이적으로 서식하는 생물에 대한 충분한 생물영향자료의 보강을 통해 이러한 단점을 보완할 수 있을 것으로 기대한다.

RCP 시나리오를 적용한 한국 연근해어업의 기후변화 취약성 평가: 남해안 지역을 대상으로 (Assessment of Vulnerability to Climate Change in Coastal and Offshore Fisheries of Korea under the RCP Scenarios: for the South Coast Region)

  • 김봉태;이준수;서영상
    • Ocean and Polar Research
    • /
    • 제40권1호
    • /
    • pp.37-48
    • /
    • 2018
  • The purpose of this study is to assess the climate change vulnerability of coastal and offshore fisheries in the South Sea of Korea using the RCP scenarios. Based on the vulnerability defined by IPCC, the indicator-based method was applied. Exposure indicator was calculated through weighted sum of the sea temperature and salinity forecasted by National Institute of Fisheries Science, and the weights were obtained from the time-space distribution of each fisheries. Sensitivity indicator was determined by applying the catch proportion of fisheries to the sensitivity of fish species. The adaptive capacity was measured by survey of fisheries which represent the ability of the fishermen well. As a result of summarizing the above indicators, vulnerability of coastal fisheries is higher than offshore fisheries. This shows that measures against coastal fisheries are needed. In addition, the results of each scenario are somewhat different, so it is considered that accurate prediction of climate change is important for adaptation measures.

The Concentration-Dependent Distribution of Tris(4,7'-diphenyl-1,10'-phenanthroline) Ruthenium (II) within Sol-Gel-Derived Thin Films

  • Lee, Joo-Woon;Cho, Eun-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2765-2770
    • /
    • 2011
  • Organic dye-doped glasses, viz., ruthenium (II) tris(4,7'-diphenyl-1,10'-phenanthroline) $[Ru(dpp)_3]^{2+}$ incorporated into thin silica xerogel films produced by the sol-gel method, were prepared and their $O_2$ quenching properties investigated as a function of the $[Ru(dpp)_3]^{2+}$ concentration (3-400 ${\mu}M$) within the xerogel. The ratio of the luminescence from the $[Ru(dpp)_3]^{2+}$-doped films in the presence of $N_2$ and $O_2$ ($I_{N2}/I_{O2}$) was used to describe the film sensitivity to $O_2$ quenching. ($I_{N2}/I_{O2}$ changed three-fold over the $[Ru(dpp)_3]^{2+}$ concentration range. Time-resolved intensity decay studies showed that there are two discrete $[Ru(dpp)_3]^{2+}$ populations within the xerogels (${\tau}_1$ ~ 300 ns; ${\tau}_2$ ~ 3000 ns) whose relative fraction changes as the $[Ru(dpp)_3]^{2+}$ concentration changes. The increased $O_2$ sensitivity that is observed at the higher $[Ru(dpp)_3]^{2+}$ concentrations is a manifestation of a greater fraction of the 3000 ns $[Ru(dpp)_3]^{2+}$ species (more susceptible to $O_2$ quenching). A model is presented to describe the observed response characteristics resulting from $[Ru(dpp)_3]^{2+}$ distribution within the xerogel.

Effect of Organic Solvent Extractives on Korean Softwoods Classification Using Near-infrared Spectroscopy

  • Yeon, Seungheon;Park, Se-Yeong;Kim, Jong-Hwa;Kim, Jong-Chan;Yang, Sang-Yun;Yeo, Hwanmyeong;Kwon, Ohkyung;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.509-518
    • /
    • 2019
  • This study analyzed the effect of organic solvent extractives on the classification of wood species via near-infrared spectroscopy (NIR). In our previous research, five species of Korean softwood were classified into three groups (i.e., Cryptomeria japonica (cedar)/Chamaecyparis obtuse (cypress), Pinus densiflora (red pine)/Pinus koraiensis (Korean pine), and Larix kaempferi (Larch)) using an NIR-based principal component analysis method. Similar tendencies of extractive distribution were observed among the three groups in that study. Therefore, in this study, we qualitatively analyzed extractives extracted by an organic solvent and analyzed the NIR spectra in terms of the extractives' chemical structure and band assignment to determine their effect in more detail. Cedar/cypress showed a similar NIR spectra patterns by removing the extractives at 1695, 1724, and 2291 nm. D-pinitol, which was detected in cedar, contributed to that wavelength. Red pine/Korean pine showed spectra changes at 1616, 1695, 1681, 1705, 1724, 1731, 1765, 1780, and 2300 nm. Diterpenoids and fatty acid, which have a carboxylic group and an aliphatic double bond, contributed to that wavelength. Larch showed a catechin peak in gas chromatography and mass spectroscopy analysis, but it exhibited very small NIR spectra changes. The aromatic bond in larch seemed to have low sensitivity because of the 1st overtone of the O-H bond of the sawdust cellulose. The three groups sorted via NIR spectroscopy in the previous research showed quite different compositions of extractives, in accordance with the NIR band assignment. Thus, organic solvent extractives are expected to affect the classification of wood species using NIR spectroscopy.

Deriving Ecological Protective Concentration of Cadmium for Korean Soil Environment

  • Lee, Woo-Mi;Nam, Sun-Hwa;An, Youn-Joo
    • Environmental Engineering Research
    • /
    • 제18권4호
    • /
    • pp.241-246
    • /
    • 2013
  • For effective and efficient environmental management, developed countries, such as the Netherlands, UK, Australia, Canada, and United States apply ecological risk assessment, and they have an autonomous risk assessment methodology to protect native receptors. In this study, soil ecological protective concentration (EPC) of cadmium in Korea was derived using Korean ecological risk assessment methodology. The soil EPC of cadmium was calculated using probabilistic ecological risk assessment based on species sensitivity distribution. The soil EPC was calculated according to land use for residential/agricultural and industrial/commercial purposes. The chronic soil EPCs for residential/agricultural and industrial/commercial lands were derived to be 1.58 and 9.60 mg/kg, respectively. These values were similar to soil EPC of European Commission, the Netherlands, UK, and Canada. However, these values were lower than the established Korean soil standard, because the current soil standard was based on human risk. Therefore, the impact on an ecosystem when establishing environmental standard should be considered.

환경매체별 카드뮴의 생태위해성평가 (Ecological Risk Assessment for Cadmium in Environmental Media)

  • 이병우;이병천;윤효정;박경화;김필제
    • 한국환경보건학회지
    • /
    • 제44권6호
    • /
    • pp.548-555
    • /
    • 2018
  • Objectives: We conducted ecological risk assessment for cadmium, a heavy metal and carcinogen, to identify safety standards by environmental media and to determine its impact on ecosystems by estimating and evaluating exposure levels. Methods: Species sensitivity distributions (SSDs) were generated using ECOTOX DB. A hazardous concentration of 5% (HC5) protective of most species (95%) in the environment was estimated. Using this estimate, predicted no effect concentrations (PNECs) were calculated for aquatic organisms. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. Predicted exposure concentrations (PECs) were also calculated from environmental monitoring data with hazard quotients (HQs) calculated using PNECs for environmental media. Results: Chronic toxicity data were categorized into four groups and 11 species. In species sensitivity distribution (SSD) analysis, HC5 was $0.340{\mu}g/L$. Based on this value, the PNEC value for aquatic organisms was calculated as $0.113{\mu}g/L$. PNEC values for soil and sediments using a partition coefficient were calculated as 15.02 mg/kg and 90.61 mg/kg, respectively. In an analysis of environmental monitoring data, PEC values were calculated as $0.017{\mu}g/L$ for water, 1.01 mg/kg for soil, and 0.521 mg/kg for sediment. Conclusions: HQs were 0.150, 0.067 and 0.006 for water, soil and sediment, respectively. HQs of secondary toxicity were 0.365 for birds and 0.024 for mammals. In principle, it is judged that an HQ above 1 indicates a high level of risk concern while an HQ less than 1 indicates an extremely low level of risk concern. Therefore, with HQs of cadmium in the environment being <1, its risk levels can be considered low for each media.

토양 공극수 내 Cu의 존재형태가 terrestrial biotic ligand model을 이용한 보리의 급성독성 예측에 미치는 영향 (Effect of Cu Species Distribution in Soil Pore Water on Prediction of Acute Cu Toxicity to Hordeum vulgare using Terrestrial Biotic Ligand Model)

  • 안진성;정부윤;이병준;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권5호
    • /
    • pp.30-39
    • /
    • 2017
  • In this study, the predictive toxicity of barley Hordeum vulgare was estimated using a modified terrestrial biotic ligand model (TBLM) to account for the toxic effects of $CuOH^+$ and $CuCO_3(aq)$ generated at pH 7 or higher, and this was compared to that from the original TBLM. At pH values higher than 7, the difference in $EA_{50}\{Cu^{2+}\}$ (half maximal effective activity of $Cu^{2+}$) between the two models increased with increasing pH. As Mg concentration increased from 8.24 to 148 mg/L in the pH range of 5.5 to 8.5, the difference in $EA_{50}\{Cu^{2+}\}$ increased, and it reached its maximum at pH 8. The difference in $EC_{50}[Cu]_T$ (half maximal effective concentration of Cu) between the two models increased as dissolved organic carbon (DOC) concentration increased when pH was above 7. Thus, for soils with alkaline pH, the toxic effect of $CuOH^+$ and $CuCO_3(aq)$ are greater at higher salt and DOC concentrations. The acceptable Cu concentration in soil porewater can be estimated by the modified TBLM through deterministic method at pH levels higher than 7, while combination of TBLM and species sensitivity distribution through the probabilistic method could be utilized at pH levels lower than 7.