• Title/Summary/Keyword: Species persistence

Search Result 50, Processing Time 0.03 seconds

Distributional Characteristics and Population Substantiality of Viola mirabilis L.; Rear edge Population in Korea (한국이 후방가장자리 개체군인 넓은잎제비꽃(Viola mirabilis L.)의 분포특성과 지속가능성)

  • Chae, Hyun-Hee;Kim, Young-Chul;An, Won-Gyeong;Kwak, Myoung-Hai;Nam, Gi-Heum;Lee, Kyu-Song
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.422-439
    • /
    • 2019
  • The rear edge population is considered to have low genetic diversity and high risk of extinction according to a highly isolated distribution. However, the rear edge population is observed to have persisted for an extended period despite the low genetic diversity. As such, it is necessary to understand the ecological process involved in the persistence of the population. Viola mirabilis L. in Korea is considered the rear edge population from the perspective of the worldwide distribution. We surveyed the distribution range of V. mirabilis, which shows the isolated distribution in the central area of Korea, to find out the factors of its persistence. Next, we investigated and accessed the vegetational pattern of habitats, soil environment, phenology, self-compatibility, population structure, and extinction risk factors observed in the distribution area. V. mirabilis was distributed in the understory of the deciduous forest, planted forest of the deciduous conifer and deciduous broad-leaved trees, shrubland, and grassland in the limestone area. We also observed the re-establishment of seedlings in the population, and most of them showed a stable population structure. For chasmogamous flowers, the visit by pollinators has a significantly positive relationship with the production of fruits. However, we found that the production of the cleistogamous flowers was more numerous in all studied populations and that only the cleistogamous flowers were produced despite a more substantial plant size in some populations. The plant size was more related to the production of the cleistogamous flowers than that of the chasmogamous flowers. Accordingly, the cleistogamous flowers significantly contributed to seedling recruitment in the population. We found that the production of the chasmogamous flowers and the cleistogamous flowers did not have a correlation with the factors of the soil analysis except for phosphoric acid. V. mirabilis showed the self-incompatibility characteristics most likely due to the production capability of the cleistogamous flowers. Potential extinction risk factors observed in the distribution area was included the development of limestone mine, the expansion of agricultural fields, and the construction of houses. Although V. mirabilis showed an isolated distribution in the limestone area in the Korean peninsula, it showed a diverse distribution in a wide habitat environment ranging from the grassland to the understory of the trees with relatively low canopy closure rate. Moreover, we concluded that the persistence of the population was possible if we can maintain the current state of multiple populations and stable population structure.

Review of Respiratory Disease and Hazardous Agents Caused by the Use of Biocide in Metalworking Operations (수용성 금속가공유에서 살균제 사용으로 발생된 유해인자 및 호흡기 질환 위험 고찰)

  • Park, Donguk;Ko, Yeji;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.169-176
    • /
    • 2013
  • Objectives: The aim of this study is to critically review the health effects of not only direct exposure to biocide, but also indirect exposure to by-product hazardous agents generated through the use of biocide in metalworking operations. Methods: An extensive literature review was conducted of studies reporting on respiratory disease cases, particularly hypersensitivity pneumonitis (HP), in environments using water-soluble metalworking fluids (MWFs). Keyword search terms included 'metalworking fluids', 'machining fluids', 'metalworking operation' 'machining operation' and 'biocide', which were also used in combination. Additional articles were identified in references cited in the articles reviewed. Results: Several of the field, epidemiological and experimental studies reviewed assumed that the symptoms and signs typical of HP developed in machinists who handled water-soluble MWF could be caused by inhalation exposure to nontuberculous mycobacteria (NTM). Most NTM are known to be not only resistant to both biocide and disinfectant, but also to have acid-fast cell walls that are highly antigenic. The presence or persistence of the Mycobacterium species, referred to as NTM, in metalworking fluid-using operations may be caused by NTM contamination in either the natural water or tap water that is used to dilute the base oil and additives for water-soluble MWFs. This hypothesis that NTM contamination in water-soluble MWFs is a causative agent of HP has high biologic plausibility, such as antigenic property, hydrophobicity and small diameter (< 5 um). Conclusions: Aerosolized mycobacteria colonized from MWF are likely to be causing the HP. Inhalation exposure to mycobacteria should be considered as a possible cause for the development of HP.

Isolation and Characterization of Chlorothalonil-dissipating Bacteria from Soil. (토양으로부터 Chlorothalonil 전환 미생물의 분리 및 특성)

  • 이수현;신재호;최준호;박종우;김장억;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.96-100
    • /
    • 2004
  • Chlorothalonil is a wide-spectrum fungicide that is widely used in the world. Chlorothalonil is known as a potential toxic pollutant due to its high application rate, persistence, and toxicity to humans and other species. With the Increase of necessity of bioremediation, this study was conducted to isolate the chlorothalonil dissipation bacteria from soil. Soil samples were collected from 184 sites of farmland and wastewater disposal soil.661 strains resistant to chlorothalonil were isolated by dilution method from chlorothalonil-containing enrichment culture. After incubating at $30^{\circ}C$ in 1/10 LB media containing 10 ppm of chlorothalonil for a week, dissipation ability of chlorothalonil was investigated by HPLC. Finally, a strain SH35B, capable of dissipating chlorothalonil efficiently, was selected. The strain SH35B was identified as Ochrobactrum sp. Ten ppm of chlorothalonil In 1/10 LB media were completely dissipated by the growth of Ochrobactrum sp. SH35B for 30 h at $30^{\circ}C$. In the isolated strain, the content of glutathione and the activity of glutathione S-transferase were supposed to be ones of the Important factors for chlorothalonil dissipation and were higher than those of control strains, Escherichia coli and Bacillus subtilis.

A Gene-Tagging System for Monitoring of Xanthomonas Species

  • Song, Wan-Yeon;Steven W. Hutcheson;Efs;Norman W. Schaad
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.137-143
    • /
    • 1999
  • A novel chromosomal gene tagging technique using a specific fragment of the fatty acid desaturase-like open reading frame (des-like ORF) from the tox-argK gene cluster of Pseudomonas syringae pv. phaseolicola was developed to identify Xanthomonas spp.released into the environment as biocontrol agents. X. campestris pv. convolvuli FB-635, a pathogen of Convolvulus arvensis L., (bindweed), was chosen as the organism in which to develop and test the system. A 0.52 kb DES fragment amplified from P. syringae pv. phaseolicola C-199 was inserted into pGX15, a cosmid clone containing a 10.3 kb Eco RI-HindIII fragment derived from the xanthomonadin biosynthetic gene cluster contained in plasmid pIG102, to create a pigG::DES insertion. The 10.8 kb EcoRI-BamHI fragment carrying the pigG:: DES insertion was cloned into pLAFR3 to generate pLXP22. pLXP22 was then conjugated into X. campestris pv. convolvuli FB-635 and the pigG::DES insertion integrated into the bacterial chromosome by marker exchange. Rifampicin resistant, tetracycline sensitive, starch hydrolyzing, white colonies were used to differentiate the marked strain from yellow pigmented wild-type ones. PCR primers specific for the unique DES fragment were used for direct detection of the marked strain. Result showed the marked strain could be detected at very low levels even in the presence of high levels of other closely related or competitive bacteria. This PCR-based DES-tagging system provides a rapid and specific tool for directly monitoring the dispersal and persistence of Xanthomonas spp.released into the environment.

  • PDF

Population Genetic Structure of Potentilla discolor Bunge, Rosaceae in Korea (한국내 솜양지꽃의 집단 유전 구조)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.898-903
    • /
    • 2006
  • The genetic diversity and population structure of fifteen Potentilla discolor Bunge populations in Korea were determined using genetic variations at 19 allozyme loci. Fourteen of the 19 loci (73.7%) showed detectable polymorphism. Genetic diversity at the species level and at the population level was high ($H_{ES}\;=\;0.215$, $H_{EP}\;=\;0.196$, respectively), whereas the extent of the population divergence was relatively low $(G_{ST}\;=\;0.069)$. Total genetic diversity values $(H_T)$ varied between 0.0 and 0.656, giving an average overall polymorphic loci of 0.292. The interlocus variation of genetic diversity within populations $(H_S)$ was high (0.274). On a per locus basis, the proportion of total genetic variation due to differences among populations $(G_{ST})$ ranged from 0.010 for Pgm-2 to 0.261 for Pgd-2 with a mean of 0.069, indicating that about 6.9% of the total allozyme variation was among populations. Wide geographic ranges, perennial herbaceous nature and the persistence of multiple generations are associated with the high level of genetic variation in P. discolor. The estimate of gene flow based on $G_{ST}$ was high among Korean populations of P. discolor (Nm = 3.36).

Assessment of Seasonal Variations in the Treatment Efficiency of Constructed Wetlands

  • Reyes, Nash Jett DG.;Geronimo, Franz Kevin F.;Choi, Hyeseon;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.231-231
    • /
    • 2020
  • Unlike conventional treatment technologies, the performance of nature-based facilities were susceptible to seasonal changes and climatological variabilities. This study evaluated the effects of seasonal variables on the treatment performance of constructed wetlands (CWs). Two CWs treating runoff and discharge from agricultural and livestock areas were monitored to determine the efficiency of the systems in reducing particulates, organics, and nutrients in the influent. For all four seasons, the mean effluent suspended solids concentration in the agricultural CW (ACW) increased by -2% to -39%. The occurrence of algal blooms in the system during summer and fall seasons resulted to the greatest increase in the amount of suspended materials in the overlying water. unlike ACW, the livestock CW (LCW) performed efficiently throughout the year, with mean suspended solids removal amounting to 61% to 68%. Algal blooms were still present in LCW seasonally; however, the constant inflow in the system limited the proliferation of phytoplankton through continuous flushing. The total nitrogen (TN) and total phosphorus (TP) removal efficiencies in ACW were higher during the summer (21% to 25%) and fall (8% to 21%) seasons since phytoplankton utilize nitrogen and phosphorus during the early stages of phytoplankton blooms. In the case of LCW, the most efficient reduction in TN (24%) and TP (54%) concentrations were also noted in summer, which can be attributed to the favorable environmental conditions for microbial activities. The mean removal of organics in ACW was lowest during summer season (-52% to 35%), wherein the onset of algal decay triggered a relative increase in organic matter and stimulate bacterial growth. The removal of organics in LCW was highest (54 % to 55%) during the fall and winter seasons since low water temperatures may limit the persistence of various algal species. Variations in environmental conditions due to seasonal changes can greatly affect the performance of CW systems. This study effectively established the contributory factors affecting the feasibility of utilizing CW systems for treating agricultural and livestock discharges and runoff.

  • PDF

Transcriptional and Mycolic Acid Profiling in Mycobacterium bovis BCG In Vitro Show an Effect for c-di-GMP and Overlap between Dormancy and Biofilms

  • Cruz, Miguel A. De la;Ares, Miguel A.;Rodriguez-Valverde, Diana;Vallejo-Cardona, Alba Adriana;Flores-Valdez, Mario Alberto;Nunez, Iris Denisse Cota;Aceves-Sanchez, Michel de Jesus;Lira-Chavez, Jonahtan;Rodriguez-Campos, Jacobo;Bravo-Madrigal, Jorge
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.811-821
    • /
    • 2020
  • Mycobacterium tuberculosis produces mycolic acids which are relevant for persistence, recalcitrance to antibiotics and defiance to host immunity. c-di-GMP is a second messenger involved in transition from planktonic cells to biofilms, whose levels are controlled by diguanylate cyclases (DGC) and phosphodiesterases (PDE). The transcriptional regulator dosR, is involved in response to low oxygen, a condition likely happening to a subset of cells within biofilms. Here, we found that in M. bovis BCG, expression of both BCG1416c and BCG1419c genes, which code for a DGC and a PDE, respectively, decreased in both stationary phase and during biofilm production. The kasA, kasB, and fas genes, which are involved in mycolic acid biosynthesis, were induced in biofilm cultures, as was dosR, therefore suggesting an inverse correlation in their expression compared with that of genes involved in c-di-GMP metabolism. The relative abundance within trehalose dimycolate (TDM) of α-mycolates decreased during biofilm maturation, with methoxy mycolates increasing over time, and keto species remaining practically stable. Moreover, addition of synthetic c-di-GMP to mid-log phase BCG cultures reduced methoxy mycolates, increased keto species and practically did not affect α-mycolates, showing a differential effect of c-di-GMP on keto- and methoxy-mycolic acid metabolism.

Population Characteristics of Echinosophora koreensis (Nakai) Nakai, a Endemic Plants in Korea (한반도 특산식물 개느삼의 개체군 특성)

  • Kim, Sodam;Moon, Ae-Ra;An, Jong-Bin;Jung, Ji-Young;Park, Wan-Geun;Son, Sungwon
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.18-26
    • /
    • 2020
  • Echinosophora koreensis (Nakai) Nakai an endemic plant with limited distribution in some parts of the Korean Peninsula, is designated as "Endangered" species on the IUCN Red List. The species is under the threat of deterioration in nature due to various environmental changes causing loss of natural habitats. We investigated the distribution pattern and population structure of E. koreensis to serve as a basic reference for identifying the dynamics and persistence of natural populations of this species in the future. To determine the characteristics of the E. koreensis population, we laid two to three large plots sized 20m×30m on the ridgeline as the reference in Yanggu, Chuncheon, and Hongcheon and laid four to seven small quadrats sized 1m×1m on the transect. A total of 530 plots were laid, 10 each at 2m interval, to measure the number of the stems, the number of fruiting, height, and other factors. The collected distribution information was compared with the existing IUCN assessed categories by applying IUCN Red List ver 3.1 Criteria B. The average population density of the three surveyed areas was 3.47 stem/㎡; the density of each area was 3.95 stems/㎡ in Yanggu, 3.37 stems/㎡ in Chuncheon, and 2.87 stems/㎡ in Hongcheon. The number of fruiting per stem was 0.0038, indicating only 7 fruits out of 1,837 stems and that vegetative reproduction is likely to be more dominant than sexual reproduction. The distribution tendency of population density in the small plots in three surveyed areas showed that the density of E. koreensis tended to decrease toward the center of the forest with low crown openness and around the mountain ridge with high crown openness. It indicated that the quantity of light could be a very important factor for the growth of individuals of this species. The analysis of the heights of individuals present in the surveyed plots showed a range of 2.3 ~ 68.5cm and an average of 20.1cm. An analysis on the stage-structure of the E. koreensis population based on the sieve height found that the appearance frequency decreased with increasing height above 15 ~ 20cm and that the percentage of individuals lower than 10cm, which were presumed to be seedlings, was severely low, indicating a necessity of study on the population sustainability based on the monitored data. The occupied area calculated with the collected species distribution information was 200㎢, indicating the EN category according to the IUCN Red List Reference B.

Algicidal Characteristics of 1-Alkyl-3-Methylimidazolium Chloride Ionic Liquids to Several Fresh-water Algae (이온성 액체 1-alkyl-3-methylimidazolium chloride계 화합물의 담수조류에 대한 살조활성 특징)

  • Hwang, Hyun-Jin;Kim, Jae-Deog;Choi, Jung-Sup;Kim, Young-Wun;Kim, Jin-Seog
    • Korean Journal of Weed Science
    • /
    • v.30 no.3
    • /
    • pp.233-242
    • /
    • 2010
  • This study was conducted to know that if ionic liquids can be applicable as control agents of harmful algae in water-ecosystem and to find out problems caused by ionic liquid application. Firstly, the differential selectivity of various fresh-water algal species to several 1-alkyl-3-methylimidazolium chloride ionic liquids was investigated. There was a distinct differential response between alkyl chain lengths from butyl to dodecyl and towards the algal organisms : Generally algicidal activity was increased with increase of chain length and among the algae used in this study, Stephanodiscus hantzschii f. tenuis, Oscillatoria tenuis and Spirulina pratensis were most sensitive to 1-dodecyl-3-methylimidazolium chloride (MAIC12), next was Microcystis aeruginosa, and the others were relatively less sensitive to the chemical. The selectivity degree was about ten to twenty times based on the $EC_{80}$ (Effective concentration required for 80% growth inhibition). Secondly, an activity persistence of ionic liquids was investigated in natural mimic condition (using water bottle containing soil-sediments under the greenhouse condition). At the application of $1.0{\mu}g\;mL^{-1}$ of 1-octyl-3-methylimidazolium chloride (MAIC8), the algal growth did not occur at all until 6 days after treatment(DAT) and observed a only little growth at 9 DAT. But the algae grew rapidly after 9 DAT. So at 20 DAT, total chlorophylls was $264.4{\mu}g\;L^{-1}$ and the growth was inhibited by 58.2% compared to untreatment. On the other hand, MAIC12 also had a similar persistence pattern to MAIC8, showing nearly 5 times more activity than MAIC8. At 20 days after $0.2{\mu}g\;mL^{-1}$ application of MAIC12, that is, total chlorophylls was $251.2{\mu}g\;L^{-1}$ and the growth was inhibited by 55.2% compared to untreatment. In summary, 1-alkyl-3-methylimidazolium chloride ionic liquids is likely to be applicable for selective control of harmful algae as potent compounds having long lasting activity. However, the difficulty of degradation seems to be a limiting factor in an eco-friendly application of the compounds.

Stage Structure and Population Persistence of Cypripedium japonicum Thunb., a Rare and Endangered Plants (희귀 및 멸종위기식물인 광릉요강꽃의 개체군 구조 및 지속성)

  • Lee, Dong-hyoung;Kim, So-dam;Kim, Hwi-min;Moon, Ae-Ra;Kim, Sang-Yong;Park, Byung-Bae;Son, Sung-won
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.548-557
    • /
    • 2021
  • Cypripedium japonicum Thunb. is an endemic plant in East Asia, distributed only in Korea, China, and Japan. At the global level, the IUCN Red List evaluates it as "Endangered Species (EN)," and at the national level in Korea, it is evaluated as "Critically Endangered Species (CR)." In this study, we investigated the characteristics of the age structure and the sustainability of the population based on the data obtained by demographic monitoring conducted for seven years in the natural habitat. C. japonicum habitats were observed in 7 regions of Korea (Pochoen, Gapyeong, Hwacheon, Chuncheon, Yeongdong, Muju, Gwangyang), and 4,356 individuals in 15 subpopulations were identified. The population size and structure differed from region to region, and artificial management had a very important effect on the size and structural change of the population. Population viability analysis (PVA) based on changes in the number of individuals of C. japonicum showed a very diverse tendency by region. And the probability of population extinction in the next 100 years was 0.00% for Pocheon, 10.90% for Gwangyang, 24.05% for Chuncheon, and 79.50% for Hwacheon. Since the above monitored study sites were located within the conservation shelters, which restricted access by humans, unauthorized collection of C. japonicum, the biggest threat to the species, was not reflected in the individual viability. So, the risk of extinction in Korea is expected to be significantly higher than that estimated in this study. Therefore, it is necessary to reflect population information in several regions that may represent various threats to determine the extinction risk of the C. japonicum population objectively. In the future, we should expand the demographic monitoring of the C. japonicum population known in Korea.