• Title/Summary/Keyword: Species distribution model

Search Result 325, Processing Time 0.029 seconds

Computational Fluid Dynamics(CFD) Simulation for a Pilot-scale Selective Non-catalytic Reduction(SNCR) Process Using Urea Solution (요소용액을 이용한 파일럿규모 SNCR 공정에 대한 CFD 모델링 및 모사)

  • Nguyen, Thanh D.B.;Kang, Tae-Ho;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.922-930
    • /
    • 2008
  • The selective non-catalytic reduction(SNCR) performance is sensitive to the process parameters such as flow velocity, reaction temperature and mixing of reagent(ammonia or urea) with the flue gases. Therefore, the knowledge of the velocity field, temperature field and species concentration distribution is crucial for the design and operation of an effective SNCR injection system. In this work, a full-scale two-dimensional computational fluid dynamics(CFD)-based reacting model involving a droplet model is built and validated with the data obtained from a pilot-scale urea-based SNCR reactor installed with a 150 kW LPG burner. The kinetic mechanism with seven reactions for nitrogen oxides($NO_x$) reduction by urea-water solution is used to predict $NO_x$ reduction and ammonia slip. Using the turbulent reacting flow CFD model involving the discrete droplet phase, the CFD simulation results show maximum 20% difference from the experimental data for NO reduction. For $NH_3$ slip, the simulation results have a similar tendency with the experimental data with regard to the temperature and the normalized stoichiometric ratio(NSR).

Prediction of Potential Habitat and Damage Amount of Rare·Endemic Plants (Sophora Koreensis Nakai) Using NBR and MaxEnt Model Analysis - For the Forest Fire Area of Bibongsan (Mt.) in Yanggu - (NBR과 MaxEnt 모델 분석을 활용한 희귀특산식물(개느삼) 분포 및 피해량 예측 - 양구 비봉산 산불피해지를 대상으로-)

  • Yun, Ho-Geun;Lee, Jong-Won;An, Jong-Bin;Yu, Seung-Bong;Bak, Gi-Ppeum;Shin, Hyun-Tak;Park, Wan-Geun;Kim, Sang-Jun
    • Korean Journal of Plant Resources
    • /
    • v.35 no.2
    • /
    • pp.169-182
    • /
    • 2022
  • This study was conducted to predict the distribution of rare·endemic plants (Sophora koreensis Nakai) in the border forests where wildfire damage occurred and to quantify the damage. For this purpose, we tried to derive more accurate results through forest area damage (NBR) according to the Burn severity of wildfires, damage by tree species type (Vegetation map), and MaxEnt model. For Burn severity analysis, satellite imagery (Landsat-8) was used to analyze Burn severity (ΔNBR2016-2015) and to derive the extent of damage. To prepare the Vegetation map, the land cover map prepared by the Ministry of Environment, the Vegetation map prepared by the Korea Forest Service, and the vegetation survey conducted by itself were conducted to prepare the clinical map before and after the forest fire. Lastly, for MaxEnt model analysis, the AUC value was derived by using the habitat coordinates of Sophora koreensis Nakai based on the related literature and self-report data. As a result of combining the Maxent model analysis data with the Burn severity data, it was confirmed that 45.9% of the 44,760 m2 of habitat (predicted) area of Sophora koreensis Nakai in the wildfire damaged area or 20,552 m2, was damaged.

Study on Conservation and Habitat Restoration Based on Ecological Diagnosis for Cymbidium kanran Makino in Jeju Island, Korea (한국 제주도 한란의 생태 진단에 기초한 보전 및 서식지 복원에 관한 연구)

  • Jung, Ji-Young;Shin, Jae-Kwon;Kim, Han-Gyeoul;Byun, Jun-Gi;Pi, Jung-Hun;Koo, Bon-Yeol;Park, Jeong-Geun;Suh, Gang-Uk;Lee, Cheul-Ho;Son, Sung-Won;Kim, Jun-Soo;Cho, Hyun-Je;Bae, Kwan-Ho;Oh, Seung-Hwan;Kim, Hyun-Cheol;Kang, Seung-Tae;Cho, Yong-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.11-21
    • /
    • 2016
  • Cymbidium kanran Makino is being threatened in its own habitats due illegal collecting and habitat changes by vegetation growth along historical landuse change. In this study, we established habitat restoration model for conservation of C. kanran based on ecological diagnosis. Through exploration to Jeju Island in 2014 and 2015, we identified 27 unknown habitats of C. kanran and in there, abiotic variables and vegetation structure and composition were quantified. Altitudinal distribution of C. kanran was between 200 m~700 m a.s.l. and compared to distribution in 2004, Area of Occupation (AOO) decreased at 82%. Specific habitat affinity was not observed by evenly found in mountain slope and valley and summergreen and evergreen broadleaved forests, but likely more abundant in valley habitats with higher soil and ambient moisture. Total of 96 individual of C. kanran was observed with an average density of $942.6individuals\;ha^{-1}$. The plants showed relatively short leaf length (average=$10.7cm{\pm}1.1cm$) and small number of pseudo bulbs ($1.2{\pm}0.2$). Flowering and fruiting individuals were not observed in field. C. kanran was classified into endangered plant species as CR (Critically Endangered) category by IUCN criteria. Phenotypic plasticity of C. kanran was likely support to sustain in more shaded habitat environment and recent habatat changes to closed canopy and low light availability may exhibit negatively effects to C. kanran's life history. Restoring C. kanran habitat should create open environment as grassland and low woody species density.

Abundance and Occupancy of Forest Mammals at Mijiang Area in the Lower Tumen River (두만강 하류 밀강 지역의 산림성 포유류 풍부도와 점유율)

  • Hai-Long Li;Chang-Yong Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.429-438
    • /
    • 2023
  • The forest in the lower Tumen River serves as an important ecosystem spanning the territories of North Korea, Russia, and China, and it provides habitat and movement corridors for diverse mammals, including the endangered Amur tiger (Panthera tigris) and Amur leopard (Panthera pardus). This study focuses on the Mijiang area, situated as a potential ecological corridor connecting North Korea and China in the lower Tumen River, playing a crucial role in conserving and restoring the biodiversity of the Korean Peninsula. This study aimed to identify mammal species and estimate their relative abundance, occupancy, and distribution based on the 48 camera traps installed in the Mijiang area from May 2019 to May 2021. The results confirmed the presence of 18 mammal species in the Mijiang area, including large carnivores like tigers and leopards. Among the dominant mammals, four species of ungulates showed high occupancy and detection rates, particularly the Roe deer (Capreolus pygargus) and Wild boar (Sus scrofa). The roe deer was distributed across all areas with a predicted high occupancy rate of 0.97, influenced by altitude, urban residential areas, and patch density. Wild boars showed a predicted occupancy rate of 0.73 and were distributed throughout the entire area, with factors such as wetland ratio, grazing intensity, and spatial heterogeneity in aspects of the landscape influencing their occupancy and detection rates. Sika deer (Cervus nippon) exhibited a predicted occupancy rate of 0.48, confined to specific areas, influenced by slope, habitat fragmentation diversity affecting detection rates, and the ratio of open forests impacting occupancy. Water deer (Hydropotes inermis) displayed a very low occupancy rate of 0.06 along the Tumen River Basin, with higher occupancy in lower altitude areas and increased detection in locations with high spatial heterogeneity in aspects. This study confirmed that the Mijiang area serves as a habitat supporting diverse mammals in the lower Tumen River while also playing a crucial role in facilitating animal movement and habitat connectivity. Additionally, the occupancy prediction model developed in this study is expected to contribute to predicting mammal distribution within the disrupted Tumen River basin due to human interference and identifying and protecting potential ecological corridors in this transboundary region.

Distribution Characteristics and Background Air Classification of PM2.5 OC and EC in Summer Monsoon Season at the Anmyeondo Global Atmosphere Watch (GAW) Regional Station (안면도 기후변화감시소의 여름철 PM2.5 OC와 EC 분포 특성 및 배경대기 구분)

  • Ham, Jeeyoung;Lee, Meehye;Ryoo, Sang-Boom;Lee, Young-Gon
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2019
  • Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured with Sunset Laboratory Model-5 Semi-Continuous OC/EC Field Analyzer by NIOSH/TOT method at Anmyeondo Global Atmosphere Watch (GAW) Regional Station (37°32'N, 127°19'E) in July and August, 2017. The mean values of OC and EC were 3.7 ㎍ m-3 and 0.7 ㎍ m-3, respectively. During the study period, the concentrations of reactive gases and aerosol compositions were evidently lower than those of other seasons. It is mostly due to meteorological setting of the northeast Asia, where the influence of continental outflow is at its minimum during this season under southwesterly wind. While the diurnal variation of OC and EC were not clear, the concentrations of O3, CO, NOx, EC, and OC were evidently enhanced under easterly wind at night from 20:00 to 8:00. However, the high concentration of EC was observed concurrently with CO and NOx under northerly wind during 20:00~24:00. It indicates the influence of thermal power plant and industrial facilities, which was recognized as a major emission source during KORUS-AQ campaign. The diurnal variations of pollutants clearly showed the influence of land-sea breeze, in which OC showed good correlation between EC and O3 in seabreeze. It is estimated to be the recirculation of pollutants in land-sea breeze cycle. This study suggests that in general, Anmyeondo station serves well as a background monitoring station. However, the variation in meteorological condition is so dynamic that it is primary factor to determine the concentrations of secondary species as well as primary pollutants at Anmyeondo station.

Assessment of DMS photochemistry at Jeju Island During the Asian Oust-Storm Period of Spring 2001 : Comparison of Model Simulations with Field Observations

  • Shon, Zang-Ho;Hilton Swan;Keith N. Bower;Kim, Ki-Hyun;Lee, Gangwoong;Kim, Jiyoung
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.343-343
    • /
    • 2002
  • This study examines the influence of long-range transport of dust particles and air pollutants on both local/regional DMS oxidation chemistry and the distribution of sulfur compounds at Jeju Island (33.17$^{\circ}$ N. 126.10$^{\circ}$ E) during the Asian dust-storm(ADS) period in April 2001. The atmospheric concentrations of these sulfur species were measured at a ground station on Jeju Island. Korea as Part of the ACE-Asia intensive operation. Three ADS events were observed during the periods of 10-12, 13-14. and 25-26 April. respectively. The concentrations of DMS and CS$_2$ were higher during the ADS period than during the non-Asian-dust-storm (NADS) period. Conversely. a difference in SO$_2$ levels during the ADS period was not distinguishable from those during the NADS period. The diurnal variation pattern of DMS observed was largely different from that in the remote marine boundary layer. DMS loss by NO$_3$ in the atmospheric boundary layer was dominant due to significantly high NOx levels influenced by the long-range transport of pollutants from East Asia to Jeju Island The DMS maximum during the ADS period was observed in the late afternoon. The oceanic fluxes of DMS during the ADS and NADS periods were estimated to be 5.7$\pm$2.3 and 2.9 (+2.8/-1.5) mole m$^{-2}$ day$^{-1}$ . respectively. The contribution of oxidized DMS to SO$_2$ levels at Jeju Island during the study period was found to be insignificant.

  • PDF

Bioavailability of Ranitidine Tablets in Rats (흰쥐에서 라니티딘제제의 생체이용률)

  • 이미숙;구영순
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.636-644
    • /
    • 1995
  • Comparison of bioavailabflity (BA) of three brands of ranitidine (RT) tablets has been studied m rats. The purpose of this study was to characterize the pharniacolunetics of RT tablets in the rat and to coinpare phannacolunetic parameters of three brands of RT tablets. In addition, it was investigated whether plasma RT concentrations m humans can be predicted from pharmacokinetic parameters obtained in rats. RT was administered intravenously in dose of RT.HCI 10mg/kg and orally in dose of RT.HCI 50mg/kg as solution or crushed sample of thablets. Plasma RT concentrations were determned by HPLC. Plasma RT concentrations as a function of time were fitted to two compartment model. Plasma RT concentrations declined with a terminal half life ($t_{{1}/2{\betha}}$) of 40.9 min. The plasma RT concentration-time curve showed two peak plasma concentrations following an oral administration of solution or crushed sample in rats like humans. No significant difference among pharmacokinetic parameters was observed except $T_{max2}$ (p<0.05). The BA for crushed sample A, B and C were found to be 54.6 40.7 and 40.0%, respectively. Equivalence of $C_{max1}$ and $T_{max2}$ were guaranteed in this study. However, it was concluded that three brands of RT tablets are bioequivalent, taking the following characteristics of RT into consideration;(1) rapid onset of the effect is not required, (2) $C_{max1}$ and $T_{max2}$ do not seem to influence the effectiveness of the drug during a long-term treatment by the usual administration of twice a day. Results from this study were combined with plarmacokinetic data for RT in dogs and humans to develop a basis for interspecies scale-up of the disposition characteristics of the drug. there were similarities in the general disposition of the drug. Allometric relationships were sought between pharmacokinetic parameters nd species body weight. Significant interspecies correlations were found for total body clearance($Cl_{t}$) and steady state volume of distribution ($Bd_{ss}$). Thus, plasma RT concentrations in humans can be predicted from pharmacokinetic parameters obtained in rats.

  • PDF

Effects of Pressure Ratio on Population Inversion in a DF Chemical Laser with Concurrent Lasing

  • Park, Jun-Sung;Baek, Seung-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.287-293
    • /
    • 2004
  • A numerical simulation is presented for investigating the effects of pressure ratio of $D_2$ injector to supersonic nozzle on the population inversion in the DF chemical laser cavity, while a lasing concurrently takes place. The laser beam is generated between the mirrors in the cavity and it is important to obtain stronger population inversion and more uniform distribution of the excited molecules in the laser cavity in order to produce high power laser beam with good quality. In this study, these phenomena are investigated by means of analyzing the distributions of the DF excited molecules and the F atom used as an oxidant, while simultaneously estimating the maximum small signal and saturated gains and power in the DF chemical laser cavity. For the numerical solution, an 11-species (including DF molecules in various excited states of energies), 32-step chemistry model is adopted for the chemical reaction of the DF chemical laser system. The results are discussed by comparison with two $D_2$injector pressure cases; 192 torr and 388.64 torr. Major results reveal that in the resonator, stronger population inversions occur in the all transitions except DF(1)-DF(0), when the $D_2$injection pressure is lower. But, the higher $D_2$injection pressure provides a favorable condition for DF(1)-DF(0) transition to generate the higher power laser beam. In other words, as the pressure of $D_2$injector increases, the maximum small signal gain in the $V_{1-0}$ transition, which is in charge of generating most of laser power, becomes higher. Therefore, the total laser beam power becomes higher.r.

  • PDF

A Survey of the Brassica rapa Genome by BAC-End Sequence Analysis and Comparison with Arabidopsis thaliana

  • Hong, Chang Pyo;Plaha, Prikshit;Koo, Dal-Hoe;Yang, Tae-Jin;Choi, Su Ryun;Lee, Young Ki;Uhm, Taesik;Bang, Jae-Wook;Edwards, David;Bancroft, Ian;Park, Beom-Seok;Lee, Jungho;Lim, Yong Pyo
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.300-307
    • /
    • 2006
  • Brassica rapa ssp. pekinensis (Chinese cabbage) is an economically important crop and a model plant for studies on polyploidization and phenotypic evolution. To gain an insight into the structure of the B. rapa genome we analyzed 12,017 BAC-end sequences for the presence of transposable elements (TEs), SSRs, centromeric satellite repeats and genes, and similarity to the closely related genome of Arabidopsis thaliana. TEs were estimated to occupy 14% of the genome, with 12.3% of the genome represented by retrotransposons. It was estimated that the B. rapa genome contains 43,000 genes, 1.6 times greater than the genome of A. thaliana. A number of centromeric satellite sequences, representing variations of a 176-bp consensus sequence, were identified. This sequence has undergone rapid evolution within the B. rapa genome and has diverged among the related species of Brassicaceae. A study of SSRs demonstrated a non-random distribution with a greater abundance within predicted intergenic regions. Our results provide an initial characterization of the genome of B. rapa and provide the basis for detailed analysis through whole-genome sequencing.

Modeling on Ratio-Dependent Three-Trophic Population Dynamics Responding to Environmental Impacts (외부 환경영향에 대한 밀도비 의존 3영양단계의 개체군 동태 모델)

  • Lee, Sang-Hee;Choi, Kyung-Hee;Chon, Tae-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.304-312
    • /
    • 2004
  • The transient dynamics of three-trophic populations (prey, predator, and super predator) using ratio-dependent models responding to environmental impacts is analyzed. Environmental factors were divided into two parts: periodic factor (e.g., temperature) and general noise. Periodic factor was addressed as a frequency and bias, while general noise was expressed as a Gaussian distribution. Temperature bias ${\varepsilon}$, temperature frequency ${\Omega}$, and Gaussian noise amplitude ${\`{O}}$ accordingly revealed diverse status of population dynamics in three-trophic food chain, including extinction of species. The model showed stable limit cycles and strange attractors in the long-time behavior depending upon various values of the parameters. The dynamic behavior of the system appeared to be sensitive to changes in environmental input. The parameters of environmental input play an important role in determining extinction time of super predator and predator populations.