Browse > Article

A Survey of the Brassica rapa Genome by BAC-End Sequence Analysis and Comparison with Arabidopsis thaliana  

Hong, Chang Pyo (Department of Horticulture, College of Agriculture and Life Science, Chungnam National University)
Plaha, Prikshit (Advanced Centre of Hill Bioresources & Biotechnology, HP Agricultural University)
Koo, Dal-Hoe (Department of Bioscience, School of Bioscience and Biotechnology, Chungnam National University)
Yang, Tae-Jin (Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University)
Choi, Su Ryun (Department of Horticulture, College of Agriculture and Life Science, Chungnam National University)
Lee, Young Ki (Department of Horticulture, College of Agriculture and Life Science, Chungnam National University)
Uhm, Taesik (Department of Horticulture, College of Agriculture and Life Science, Chungnam National University)
Bang, Jae-Wook (Department of Bioscience, School of Bioscience and Biotechnology, Chungnam National University)
Edwards, David (Primary Industries Research Victoria, Department of Primary Industries, Victorian AgriBioscience Centre)
Bancroft, Ian (Department of Crop Genetics, John Innes Centre, Norwich Research Park)
Park, Beom-Seok (Brassica Genomics Team, National Institute of Agricultural Biotechnology)
Lee, Jungho (Green Plant Institute)
Lim, Yong Pyo (Department of Horticulture, College of Agriculture and Life Science, Chungnam National University)
Abstract
Brassica rapa ssp. pekinensis (Chinese cabbage) is an economically important crop and a model plant for studies on polyploidization and phenotypic evolution. To gain an insight into the structure of the B. rapa genome we analyzed 12,017 BAC-end sequences for the presence of transposable elements (TEs), SSRs, centromeric satellite repeats and genes, and similarity to the closely related genome of Arabidopsis thaliana. TEs were estimated to occupy 14% of the genome, with 12.3% of the genome represented by retrotransposons. It was estimated that the B. rapa genome contains 43,000 genes, 1.6 times greater than the genome of A. thaliana. A number of centromeric satellite sequences, representing variations of a 176-bp consensus sequence, were identified. This sequence has undergone rapid evolution within the B. rapa genome and has diverged among the related species of Brassicaceae. A study of SSRs demonstrated a non-random distribution with a greater abundance within predicted intergenic regions. Our results provide an initial characterization of the genome of B. rapa and provide the basis for detailed analysis through whole-genome sequencing.
Keywords
Arabidopsis thaliana; BAC-End Sequence; Brassica rapa ssp. pekinensis; Centromeric Satellite Sequence; Simple Sequence Repeat; Transposable Element;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 20  (Related Records In Web of Science)
연도 인용수 순위
1 Bevan, M. and Walsh, S. (2005) The Arabidopsis genome: a foundation for plant research. Genome Res. 15, 1632−1642   DOI   ScienceOn
2 Bowers, J. E., Chapman, B. A., Rong, J., and Paterson, A. H. (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433−438   DOI   ScienceOn
3 Dong, F., Miller, J. T., Jackson, S. A., Wang, G. L., Ronald, P. C., et al. (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc. Natl. Acad. Sci. USA 95, 8135−8140
4 Fedoroff, N. (2000) Transposons and genome evolution in plants. Proc. Natl. Acad. Sci. USA 97, 7002−7007
5 Fujiyama, A., Watanabe, H., Toyoda, A., Taylor, T. D., Itoh, T., et al. (2002) Construction and analysis of a humanchimpanzee comparative clone map. Science 295, 131−134
6 Goff et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92−100
7 Heslop-Harrison, J. S., Murata, M., Ogura, Y., Schwarzacher, T., and Motoyoshi, F. (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 11, 31−42   DOI   ScienceOn
8 Johnston, J. S., Pepper, A. E., Hall, A. E., Chen, Z. J., Hodnett, G., et al. (2005) Evolution of genome size in Brassicaceae. Ann. Bot. 95, 229−235   DOI   ScienceOn
9 Katti, M. V., Ranjekar, P. K., and Gupta, V. S. (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol. 18, 1161−1167
10 Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244−1245
11 Li, Y. C., Korol, A. B., Fahima, T., Beiles, A., and Nevo, E. (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11, 2453−2465
12 Lim, K. B., de Jong, H., Yang, T. J., Park, J. Y., Kwon, S. J., et al. (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol. Cells 19, 436−444
13 Lim, Y. P., Plaha, P., Choi, S. R., Uhm, T., Hong, C. P., et al. (2006) Towards unraveling the structure of Brassica rapa genome. Physiologia Plantarum 126, 585−591
14 Mahairas, G. G., Wallace, J. C., Smith, K., Swartzell, S., Holzman, T., et al. (1999) Sequence-tagged connectors: a sequence approach to mapping and scanning the human genome. Proc. Natl. Acad. Sci. USA 17, 9739−9744
15 Nagaki, K., Song, J., Stupar, R. M., Parokonny, A. S., Yuan, Q., et al. (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163, 759−770
16 Park, J. Y., Koo, D. H., Hong, C. P., Lee, S. J., Jeon, J. W., et al. (2005) Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kb gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol. Genet. Genomics 274, 579−588   DOI   ScienceOn
17 Paterson, A. H., Lan, T. H., Amasino, R., Osborn, T. C., and Quiros, C. (2001) Brassica genomics: a complement to, and early beneficiary of, the Arabidopsis sequence. Genome Biol. 2, Reviews 1011.1−1011.4
18 Quiros, C. F., Grellet, F., Sadowski, J., Suzuki, T., Li, G., et al. (2001) Arabidopsis and Brassica comparative genomics: sequence, structure and gene content in the ABI-Rps2-Ck1 chromosomal segment and related regions. Genetics 157, 1321−1330
19 Venter, J. C., Smith, H. O., and Hood, L. (1996) A new strategy for genome sequencing. Nature 381, 364−366
20 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403−410
21 Cavell, A. C., Lydiate, D. J., Parkin, I. A. P., Dean, C., and Trick, M. (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41, 62−69   DOI   ScienceOn
22 La Rota, M., Kantety, R. V., Yu, J. K., and Sorrells, M. E. (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6, 23   DOI   ScienceOn
23 Yang, Y. W., Lai, K. N., Tai, P. Y., and Li, W. H. (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J. Mol. Evol. 48, 597−604   DOI   ScienceOn
24 Jiang, J., Birchler, J. A., Parrott, W. A., and Dawe, R. K. (2003) A molecular view of plant centromeres. Trends Plant Sci. 8, 570−575   DOI   ScienceOn
25 Yang, T. J., Kim, J. S., Lim, K. B., Kwon, S. J., Kim, J. A., et al. (2005) The Korea Brassica genome project: A glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp. Funct. Genomics 6, 138−146   DOI
26 Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186−194
27 Hass, B. J., Wortman, J. R., Ronning, C. M., Hannick, L. I., Smith, R. K. Jr, et al. (2005) Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol. 3, 7   DOI   ScienceOn
28 Lysak, M. A., Koch, M. A., Pecinka, A., and Schubert, I. (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res. 15, 516−525   DOI   ScienceOn
29 Cheng, Z., Dong, F., Langdon, T., Ouyang, S., Buell, C. R., et al. (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14, 1691−1704   DOI   ScienceOn
30 Town, C. D., Cheung, F., Maiti, R., Crabtree, J., Haas, B. J., et al. (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348−1359   DOI   ScienceOn
31 Friedman, R. and Hughes, A. L. (2001) Gene duplication and the structure of eukaryotic genomes. Genome Res. 11, 373−381
32 Lawton-Rauh, A. (2002) Evolutionary dynamics of duplicated genes in plants. Mol. Phylogenet. Evol. 29, 396−409   DOI   ScienceOn
33 Ayele, M., Haas, B. J., Kumar, N., Wu, H., Xiao, Y., et al. (2005) Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res. 15, 487−495   DOI   ScienceOn
34 Yu, J., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79−92
35 Miller, J. T., Jackson, S. A., Nasuda, S., Gill, B. S., Wing, R. A., et al. (1998) Cloning and characterization of a centromerespecific repetitive DNA element from Sorghum bicolor. Theor. Appl. Genet. 96, 832−839
36 Bowen, N. J. and Jordan, I. K. (2002) Transposable elements and the evolution of eukaryotic complexity. Curr. Issues Mol. Biol. 4, 65−76
37 Gao, M., Li, G., Yang, B., McCombie, W. R., and Quiros, C. F. (2004) Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome 47, 666−679   DOI   ScienceOn
38 Lynch, M. and Conery, J. S. (2003) The origins of genome complexity. Science 302, 1401−1404   DOI
39 Copenhaver, G. P., Nickel, K., Kuromori, T., Benito, M. I., Kaul, S., et al. (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468−2474
40 Morgante, M., Hanafey, M., and Powell, W. (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet. 30, 194−200
41 Messing, J., Bharti, A. K., Karlowski, W. M., Gundlach, H., Kim, H. R., et al. (2004) Sequence composition and genome organization of maize. Proc. Natl. Acad. Sci. USA 101, 14349− 14354
42 Zhao, S. (2000) Human BAC ends. Nucleic Acids Res. 28, 129−132
43 Yang, T. J., Kim, J. S., Kwon, S. J., Lim, K. B., Choi, B. S., et al. (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18, 1339−1347   DOI   ScienceOn
44 Betrán, E. and Long, M. (2002) Expansion of genome coding regions by acquisition of new genes. Genetica 115, 65−80
45 Harbinder, S. and Lakshmikumaran, M. (1990) A repetitive sequence from Diplotaxis erucoides is highly homologous to that of Brassica campestris and B. oleracea. Plant Mol. Biol. 15, 155−156   DOI   ScienceOn
46 Henikoff, S., Ahmad, K., and Malik, H. S. (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098−1102
47 Lagercrantz, U. (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150, 1217−1228
48 U, N. (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 7, 389−452
49 Zhang, X. and Wessler, S. R. (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc. Natl. Acad. Sci. USA 101, 5589−5594
50 Ku, H. M., Vision, T., Liu, J., and Tanksley, S. D. (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97, 9121−9126
51 Fujimori, S., Washio, T., Higo, K., Ohtomo, Y., Murakami, K., et al. (2003) A novel feature of microsatellites in plants: a distribution gradient along the direction of transcription. FEBS Lett. 554, 17−22   DOI
52 The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796−815
53 Thompson, H. L., Schmidt, R., and Dean, C. (1996) Identification and distribution of seven classes of middle-repetitive DNA in the Arabidopsis thaliana genome. Nucleic Acids Res. 24, 3017−3022   DOI   ScienceOn
54 Adams, K. L. and Wendel, J. F. (2005) Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8, 135−141   DOI   ScienceOn
55 Toth, G., Gaspari, Z., and Jurka, J. (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10, 967−981
56 Wendel, J. F. and Wessler, S. R. (2000) Retrotransposonmediated genome evolution on a local ecological scale. Proc. Natl. Acad. Sci. USA 97, 6250−6252
57 Cardle, L., Ramsay, L., Milbourne, D., Macaulay, M., Marshall, D., et al. (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156, 847−854
58 Hong, C. P., Lee, S. J., Park, J. Y., Plaha, P., Park, Y. S., et al. (2004) Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol. Genet. Genomics 271, 709−716
59 Rana, D., van den Boogaart, T., O'Neill, C. M., Hynes, L., Bent, E., et al. (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 40, 725−733   DOI   ScienceOn
60 Schmidt, R., Acarkan, A., and Boivin K. (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiol. Biochem. 39, 253−262
61 Grellet, F., Delcasso, D., Panabieres, F., and Delseny, M. (1986) Organization and evolution of a higher plant alphoid-like satellite DNA sequence. J. Mol. Biol. 187, 495−507   DOI
62 O'Neill, C. M. and Bancroft, I. (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233−243
63 Bennetzen, J. L. (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115, 29−36