• Title/Summary/Keyword: Species discrimination

Search Result 161, Processing Time 0.024 seconds

Analysis of Aroma Pattern of Panax Species by Potable Handheld Gas Chromatograph (Potable handheld gas chromatograph(PHGC)를 이용한 인삼속(Panax species) 식물들의 향기패턴 분석)

  • Lee, Boo-Yong;Yang, Young-Min;Lee, Oak-Hwan;Kim, Kyung-Im
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.862-866
    • /
    • 2002
  • This study was performed to analyze aroma pattern of Panax species (Korean Panax ginseng C.A. Meyer, Chinese Panax ginseng C.A. Meyer, Panax quinquefolium L, and Panax notoginseng F.H. Chen) by the PHGC (potable handheld gas chromatograph). Ratios of several peak areas in chromatogram of derivative parrtern were as follows. If ratio of Korean Panax ginseng was 1, Panax notoginseng was $0.030{\sim}0.674$, Chinese Panax ginseng was $0.005{\sim}0.212$ and panax quinquefolium was $0.241{\sim}0.871$. Ratios of peak area at $Rt_{20.02}$ were that if Korean panax ginseng was 1, Chinese Panax ginseng was 0.212, Panax quinquefolium was 0.343 and Panax notoginseng was 0.065. Ratios also of peak area at $Rt_{21.70}\;and\;Rt_{24.90}$ showed clear difference among aroma patterns of Panax specie cultivars. Flavor component at $Rt_{26.15}$ was not detected in Panax quinquefolium and Panax notoginseng but in Korean Panax ginseng and Chinese Panax ginseng. Ratios of peak area at $Rt_{26.15}$ were that if Korean Panax ginseng was 1, Chinese Panax ginseng was 0.185. And so habitat of Panax species cultivars was discriminated. Cultivar and habitat of dried panax species was remarkably distinguised by the chromatogram of frequency pattern, derivative pattern and visual pattern using olfactory images known as Vapor $print^{TM}$.

Meat Species Identification using Loop-mediated Isothermal Amplification Assay Targeting Species-specific Mitochondrial DNA

  • Cho, Ae-Ri;Dong, Hee-Jin;Cho, Seongbeom
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.799-807
    • /
    • 2014
  • Meat source fraud and adulteration scandals have led to consumer demands for accurate meat identification methods. Nucleotide amplification assays have been proposed as an alternative method to protein-based assays for meat identification. In this study, we designed Loop-mediated isothermal amplification (LAMP) assays targeting species-specific mitochondrial DNA to identify and discriminate eight meat species; cattle, pig, horse, goat, sheep, chicken, duck, and turkey. The LAMP primer sets were designed and the target genes were discriminated according to their unique annealing temperature generated by annealing curve analysis. Their unique annealing temperatures were found to be $85.56{\pm}0.07^{\circ}C$ for cattle, $84.96{\pm}0.08^{\circ}C$ for pig, and $85.99{\pm}0.05^{\circ}C$ for horse in the BSE-LAMP set (Bos taurus, Sus scrofa domesticus and Equus caballus); $84.91{\pm}0.11^{\circ}C$ for goat and $83.90{\pm}0.11^{\circ}C$ for sheep in the CO-LAMP set (Capra hircus and Ovis aries); and $86.31{\pm}0.23^{\circ}C$ for chicken, $88.66{\pm}0.12^{\circ}C$ for duck, and $84.49{\pm}0.08^{\circ}C$ for turkey in the GAM-LAMP set (Gallus gallus, Anas platyrhynchos and Meleagris gallopavo). No cross-reactivity was observed in each set. The limits of detection (LODs) of the LAMP assays in raw and cooked meat were determined from $10pg/{\mu}L$ to $100fg/{\mu}L$ levels, and LODs in raw and cooked meat admixtures were determined from 0.01% to 0.0001% levels. The assays were performed within 30 min and showed greater sensitivity than that of the PCR assays. These novel LAMP assays provide a simple, rapid, accurate, and sensitive technology for discrimination of eight meat species.

Molecular Discrimination of Cervidae Antlers and Rangifer Antlers

  • Kim, Eun-Jin;Jung, Young-Ja;Kang, Shin-Jung;Chang, Seung-Yup;Huh, Keun;Nam, Doo-Hyun
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.114-117
    • /
    • 2001
  • Cervi Parvum Cornu is widely used as a hemopoietic, tonifying, growth-promoting, cardiotonic, and immuno-modulating agent in Korea. In order to develop the quality control method of Cervi Parvum Cornu by the identification of the biological source or origin, the molecular approach was applied using PCR (polymerase chain reaction) and PCR-RFLF (PCR-restriction fragment length polymorphism) analysis. In the PCR analysis of the mitochondrial 12S rRNA gene and cytochrome b gene regions, no distinctive DNA bands from Cervidae (deer) antlers and Rangifer (reindeer) antlers were observed. However, when the amplified products in the mitochondrial cytochrome b gene region were subjected to restriction digestion with TaqI, Cervidae antlers showed an undigested state of 380 by band, differently from two bands of 230 by and 1S0 by from Rangifer antlers. Based on this finding, the base sequences of amplified PCR products in the range of mitochondria) cytochrome b gene from Cervidae antlers and Rangifer antlers were determined and subjected to restriction analysis by various endonucleases. The results showed that antlers from Rangifer species could be simply discriminated with other antlers from 8 Cervidae species (Chinese deer, Russian deer, Hong Kong deer, New Zealand deer, Kazakhstan deer, elk, red deer and Sika deer) by PCR-RFLP analysis using AtuI, HaeIII, HpaII or Sau3AI(MboI) as well as TaqI in the range of the mitochondrial cytochrome b gene.

  • PDF

Molecular probe for identification of cysts of resting cyst of PSP-producer Alexandrium tamarense (Dinophyceae) (분자생물학적 방법을 이용하여 마비성 패류 독소를 생산하는 알렉산드륨 타마렌스 시스트 탐색)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.13 no.2
    • /
    • pp.163-167
    • /
    • 2003
  • Identification of species within the toxin-producing genus Alexandrium is vital for biotoxin monitoring and mitigation decisions regarding shellfish industry. In particular, the discrimination of resting cysts of only A. tamarense from that of Alexandrium spp. is considerable important to fundamentally monitor and predict this species before vegetative cells occur in the nature. Fluorescent cTAM-F1 DNA probe was responsible to not only binding the activity of the vegetative cells in A. tamarense, but also to the resting cysts, which was treated with methanol after fixation and stained by primuline on the surface The location of fluorescence in cultured vegetative cells and resting cysts was almost at tile bottom of the nucleus. The optimal incubation temperature and time using in situ hybridization were 50-$54^{\circ}C$ and 40-60 min, respectively, to penetrate the DNA probe into cell.

Discrimination of Pinellia tuber through Morphological characteristics and Genetic analysis (형태적 특징과 유전자분석을 통한 반하(半夏) 감별 연구)

  • Kim, Hong-Jun;Lee, Mi-Young;Hong, Seong-Mi;Ko, Byoung-Seob;Ju, Young-Sung
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.1
    • /
    • pp.93-104
    • /
    • 2002
  • The following is a list of morphologic and genetic characteristics of Pinellia tuber. 1. The original plant of Pinellia tuber is Pinellia ternata$(T_{HUNB})$$B_{REIT}$. With regards to its external morphology, it is smaller than other Araceae species and its spadix is longer than its leaves, which trifurcate. 2. As regards its internal morphology, its mucous cell is elliptical and the vessel is helical or annular-shaped. Granules exist in abundance and in various shapes. 3. Distribution and size of laticifers are the key criteria on which to differentiate between domestic and imported Pinellia tuber. Laticifers are mainly distributed in the epidermis in domestic Pinellia tuber and in the cortical parenchyma in imported Pinellia tuber. The size of laticifers is somewhere between 1,3 and $8{\mu}m$ in diameter in imported Pinellia tuber bigger than its domestic counterpart. 4. RAPD markers display a great similarity in bands between domestic and Chinese Pinellia tuber. However, RAPD primers 352, 358, 365, 368 and 374 are distinctive markers for domestic Pinellia tuber. In the meantime, North Korean Pinellia tuber, morphologically similar to domestic Pinellia tuber, is genertically distinctive from its domestic counterpart in primers 354, 358, 365, 368, 374 and 379, a finding that supports the postulation that North Korean Pinellia tuber is tuber of another Araceae species.

  • PDF

Generation of a Specific Marker to Discriminate Bacillus anthracis from Other Bacteria of the Bacillus cereus Group

  • Kim, Hyoung-Tai;Seo, Gwi-Moon;Jung, Kyoung-Hwa;Kim, Seong-Joo;Kim, Jee-Cheon;Oh, Kwang-Geun;Koo, Bon-Sung;Chai, Young-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.806-811
    • /
    • 2007
  • Bacillus anthracis is a soil pathogen capable of causing anthrax that is closely related to several environmental species, including B. cereus, B. mycoides, and B. thuringiensis. DNA homology studies showed that B. anthracis, B. cereus, B. mycoides, and B. thuringiensis are closely related, with a high sequence homology. To establish a method to specifically detect B. anthracis in situations such as environmental contamination, we initially performed RAPD-PCR with a 10-mer random primer and confirmed the presence of specific PCR bands only in B. anthracis species. One region specific for B. anthracis was cloned and sequenced, and an internal primer set was designed to amplify a 241-bp DNA fragment within the sequenced region. The PCR system involving these specific primer sets has practical applications. Using lyses methods to prepare the samples for PCR, it was possible to quickly amplify the 241-bp DNA segment from samples containing only a few bacteria. Thus, the PCR detection method developed in this study is expected to facilitate the monitoring of environmental B. anthracis contamination.

Bacterial Community Monitoring of Commercial Kimchi Produced in Korea and China with Evidence of Bacilli Spore Formation during Fermentation (한국산 및 중국산 김치의 Bacteria 군집 분석 및 발효과정 중 Bacilli 포자 형성 규명)

  • An, Doohyun;Kim, Hye-Rim;Jeong, Do-Won;Caldwell, Jane M.;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis was adopted to explore rapid differentiation in the diversity and dynamics of bacteria in kimchi made in Korea and China for future application in kimchi origin discrimination. T-RFLP analysis supported the reproducible and rapid detection of major lactic acid bacteria known to be involved in kimchi fermentation. The taxonomic resolution level of this T-RFLP analysis was between the species and genus level, but was not specific enough for the detection of a bacterium found only in one origin, either Korea or China. The bacterial community structure successions in kimchi samples from Korea and China analyzed by T-RFLP analysis occurred with a similar pattern. Bacillus spp. which were not detected in the early microbial studies of kimchi were constantly detected until the late fermentation stage of kimchi in our T-RFLP analysis and their existence was proved by culture-based identification. Additionally, sporulation of Bacillus spp. during kimchi fermentation was discovered.

Development of Polymorphic Simple Sequence Repeat Markers using High-Throughput Sequencing in Button Mushroom (Agaricus bisporus)

  • Lee, Hwa-Yong;Raveendar, Sebastin;An, Hyejin;Oh, Youn-Lee;Jang, Kab-Yeul;Kong, Won-Sik;Ryu, Hojin;So, Yoon-Sup;Chung, Jong-Wook
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.421-428
    • /
    • 2018
  • The white button mushroom (Agaricus bisporus) is one of the most widely cultivated species of edible mushroom. Despite its economic importance, relatively little is known about the genetic diversity of this species. Illumina paired-end sequencing produced 43,871,558 clean reads and 69,174 contigs were generated from five offspring. These contigs were subsequently assembled into 57,594 unigenes. The unigenes were annotated with reference genome in which 6,559 unigenes were associated with clusters, indicating orthologous genes. Gene ontology classification assigned many unigenes. Based on genome data of the five offspring, 44 polymorphic simple sequence repeat (SSR) markers were developed. The major allele frequency ranged from 0.42 to 0.92. The number of genotypes and the number of alleles ranged from 1 to 4, and from 2 to 4, respectively. The observed heterozygosity and the expected heterozygosity ranged from 0.00 to 1.00, and from 0.15 to 0.64, respectively. The polymorphic information content value ranged from 0.14 to 0.57. The genetic distances and UPGMA clustering discriminated offspring strains. The SSR markers developed in this study can be applied in polymorphism analyses of button mushroom and for cultivar discrimination.

Wild Bird Sound Classification Scheme using Focal Loss and Ensemble Learning (Focal Loss와 앙상블 학습을 이용한 야생조류 소리 분류 기법)

  • Jaeseung Lee;Jehyeok Rew
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.2
    • /
    • pp.15-25
    • /
    • 2024
  • For effective analysis of animal ecosystems, technology that can automatically identify the current status of animal habitats is crucial. Specifically, animal sound classification, which identifies species based on their sounds, is gaining great attention where video-based discrimination is impractical. Traditional studies have relied on a single deep learning model to classify animal sounds. However, sounds collected in outdoor settings often include substantial background noise, complicating the task for a single model. In addition, data imbalance among species may lead to biased model training. To address these challenges, in this paper, we propose an animal sound classification scheme that combines predictions from multiple models using Focal Loss, which adjusts penalties based on class data volume. Experiments on public datasets have demonstrated that our scheme can improve recall by up to 22.6% compared to an average of single models.

Multivariate Procedure for Variable Selection and Classification of High Dimensional Heterogeneous Data

  • Mehmood, Tahir;Rasheed, Zahid
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.575-587
    • /
    • 2015
  • The development in data collection techniques results in high dimensional data sets, where discrimination is an important and commonly encountered problem that are crucial to resolve when high dimensional data is heterogeneous (non-common variance covariance structure for classes). An example of this is to classify microbial habitat preferences based on codon/bi-codon usage. Habitat preference is important to study for evolutionary genetic relationships and may help industry produce specific enzymes. Most classification procedures assume homogeneity (common variance covariance structure for all classes), which is not guaranteed in most high dimensional data sets. We have introduced regularized elimination in partial least square coupled with QDA (rePLS-QDA) for the parsimonious variable selection and classification of high dimensional heterogeneous data sets based on recently introduced regularized elimination for variable selection in partial least square (rePLS) and heterogeneous classification procedure quadratic discriminant analysis (QDA). A comparison of proposed and existing methods is conducted over the simulated data set; in addition, the proposed procedure is implemented to classify microbial habitat preferences by their codon/bi-codon usage. Five bacterial habitats (Aquatic, Host Associated, Multiple, Specialized and Terrestrial) are modeled. The classification accuracy of each habitat is satisfactory and ranges from 89.1% to 100% on test data. Interesting codon/bi-codons usage, their mutual interactions influential for respective habitat preference are identified. The proposed method also produced results that concurred with known biological characteristics that will help researchers better understand divergence of species.