• Title/Summary/Keyword: Species differences

Search Result 2,119, Processing Time 0.026 seconds

Losses in Yield and Quality of Forage Legumes During Field Curing in Spring (봄철 포장건조 콩과목초의 수량 및 품질 손실)

  • Kim, D.A.;Kim, J.D.;Han, K.J.;Lee, K.N.;Kim, J.G.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.2
    • /
    • pp.127-132
    • /
    • 1999
  • No comprehensive study of yield and quality losses of forage legumes harvested and cured in spring has been conducted in Korea, therefore, this experiment was carried out to gain information on yield and quality, losses of alfalfa(Medicgo sativa L.), crimson clover (Trifolium incarnatum L.), and red clover(Trifolium pratense L.) during field curing in spring(mid-May). Alfalfa was highest in dry matter content of 15% at harvest, while crimson clover and red clover had 12.4 and 11.5%, respectively. Species differences for the dry matter content were maintained and consistent trends were observed during the field curing. Alfalfa took seven days to reach dry matter content over 80%, while both crimson clover and red clover took eight days. Crimson clover and alfalfa tended to show a higher leaf-stem ratio than red clover based on dry matter, but red clover showed a higher leaf-stem ratio than alfalfa and crimson clover based on crude protein content. Losses in dry matter of alfalfa from leaf shattering were higher than crimson clover and red clover, and similar trends were detected losses in crude protein for three different legumes. Fresh legume forages averaged higher in clude protein(CP), total digestible nutrients(TDN), and relative feed value(RFV), while dry legume forages averaged lower in acid detergent fiber(ADF) and neutral detergent fiber(NDF). Results of the experiment indicate that hay curing in spring affects crude protein concentration more than ADF and NDF, and this is due, in part, to leaf shattering caused by field operations.

  • PDF

Molecular and Cultivation-Based Characterization of Bacterial Community Structure in Rice Field Soil

  • KIM MI-SOON;AHN JAE-HYUNG;JUNG MEE-KUM;YU JI-HYEON;JOO DONGHUN;KIM MIN-CHEOL;SHIN HYE-CHUL;KIM TAESUNG;RYU TAE-HUN;KWEON SOON-JONG;KIM TAESAN;KIM DONG-HERN;KA JONG-OK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1087-1093
    • /
    • 2005
  • The population diversity and seasonal changes of bacterial communities in rice soils were monitored using both culture-dependent approaches and molecular methods. The rice field plot consisted of twelve subplots planted with two genetically-modified (GM) rice and two non-GM rice plants in three replicates. The DGGE analysis revealed that the bacterial community structures of the twelve subplot soils were quite similar to each other in a given month, indicating that there were no significant differences in the structure of the soil microbial populations between GM rice and non-GM rice during the experiment. However, the DGGE profiles of June soil after a sudden flooding were quite different from those of the other months. The June profiles exhibited a few intense DNA bands, compared with the others, indicating that flooding of rice field stimulated selective growth of some indigenous microorganisms. Phylogenetic analysis of l6S rDNA sequences from cultivated isolates showed that, while the isolates obtained from April soil before flooding were relatively evenly distributed among diverse genera such as Arthrobacter, Streptomyces, Terrabacter, and Bacillus/Paenibacillus, those from June soil after flooding mostly belonged to the Arthrobacter species. Phylogenetic analysis of 16S rDNA sequences obtained from the soil by cloning showed that April, August, and October had more diverse microorganisms than June. The results of this study indicated that flooding of rice fields gave a significant impact on the indigenous microbial community structure; however, the initial structure was gradually recovered over time after a sudden flooding.

Assessment of Viral Attenuation in Soil Using Probabilistic Quantitative Model (확률적 정량모델을 이용한 토양에서의 바이러스 저감 평가)

  • Park, Jeong-Ann;Kim, Jae-Hyun;Lee, In;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.544-551
    • /
    • 2011
  • The objective of this study was to analyze VIRULO model, a probabilistic quantitative model, which had been developed by US Environmental Protection Agency. The model could assess the viral attenuation capacity of soil as hydrogeologic barrier using Monte Carlo simulation. The governing equations used in the model were composed of unsaturated flow equations and viral transport equations. Among the model parameters, those related to water flow for 11 soil types were from UNDODA data, and those related to 5 virus species were from the literatures. The model compared the attenuation factor with threshold of attenuation to determine the probability of failure and presented the exceedances and Monte Carlo runs as output. The analysis indicated that among 11 USDA soil types, the viral attenuation capacity of loamy sand and sand were far lower than those of clay and silt soils. Also, there were differences in the attenuation in soil among 5 viruses with poliovirus showing the highest attenuation. The viral attenuation capacity of soil decreased sharply with increasing soil water content and increased nonlinearly with increasing soil barrier length. This study indicates that VIRULO model could be considered as a useful screening tool for viral risk assessment in subsurface environment.

Experimental Studies on the Excretion of Uric acid in Rabbit (가토의 요산배설에 관한 실험적연구)

  • Hong, Yoon-Pyo
    • The Korean Journal of Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.67-76
    • /
    • 1971
  • The excretion of uric acid in man has been of great interest because of its importance as an end product in purine metabolism as well as of its role in causing gout. There are many differences in the modes of renal handling of urate among various species of animals. Uric acid actively secreted by the renal tubules of most vertebrate including amphibians, reptiles, and birds. On the other hand, in most mammals net tubular reabsorption of urate appears to be occurred with some exception, such, as Dalmatian dog. In the rabbits, however, the mechanism of renal excretion of uric acid has long been a subject of controversial results. Within a given group it was possible to find individuals with either net secretion or net reabsorption of urate depend on the experimental conditions. Excretion of urate can be depressed or enhanced by a variety of drugs belonging mainly to the aromatic acid group. Diodrast, probenecid, cinchophen and salicylates have been reported as uricosuric agents, on the other hand, lactate, benzoate, pyrazinoic acid, acetazolamide and chlorothiazide are known to be contraindicated to use for the patient with gout since these agents depress the excretion of uric acid from the kidney. However, complex and sometimes the paradoxical effects on the urate excretion by those above mentioned drugs are not uncommon. The experiments were designed to investigate the mechanisms of renal handling of urate as well as the effects of variety of drugs on the tubular transport of uric acid in the rabbits. Male or female white rabbits, from 1.5 to 2.5 kg in weight, were used. The experimental methods used in these studies were clearance, stop-flow, and retrograde injection techniques. The effects of saline, salicylate, chlorothiazide and probenecid were investigated in each experimental conditions. Results of the experiments were summarized as follows; 1. In the rabbits, the rate of urate clearance was always lower than the rate of inulin clearance. The filtration fraction of the urate was one third on an average, therefore, it is estimated that approximately two thirds of filtered urate was reabsorbed. 2. In the kidneys of rabbits, the urate clearance was increased significantly by administration of chlorothiazide and decreased by probenecid. The administration of salicylate had no effect on the rate of urate clearance. The filtration fraction of urate was increased by chlorothiazide and decreased by probenecid. 3. In the stop-flow studies, the U/P ratio of urate was higher than the U/P ratio of inulin in the proximal region, indicating the secretion of uric acid in the proximal tubules. The proximal peak was increased by chlorothiazide and inhibited by probenecid.4. In the retrograde injection studies, the reabsorption of urate in the proximal region was observed, and these reabsorptive transport of urate was depressed by either probenecid or by chlorothiazide. 5. No distal tubular activity was observed under any of these experimental conditions concerning urate transport. The results of these experiments show that probenecid inhibits both secretory and reabsorptive transport of uric acid in the kidney of the rabbits. The enhancement of secretory transport of urate by chlorothiazide in the clearance study was due to the secondary action of chlorothiazide which inhibits the reabsorptive transport of urate in the proximal tubules. It is evident that the urate transport in the kidneys of rabbits is bidirectional nondiffusive flux both secretory and reabsorptive directions in the proximal tubules.

  • PDF

A Studies on the Bio-monitoring using Shell Valve Movements (SVMs) of Pacific Oyster Crassostrea gigas for Toxic Dinoflagellates, Genus Alexandrium (참굴, Crassostrea gigas의 패각운동을 이용한 유독와편모조 Alexandrium 속의 모니터링 연구)

  • Kim, Yoon Jeong;Yoon, Yang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.778-784
    • /
    • 2017
  • We investigated the possibility of a bio-monitoring system for predicting toxic dinoflagellates (Genus Alexandrium) by the measuring shell valve movements(SVMs) of Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia) using the Hall element sensor. We then described the SVMs of Pacific oyster exposed to the toxic algae under laboratory conditions. Pacific oyster used for experiment were fed Isochrysis galbana until they stabilized and kept under hunger conditions for three days to prevent the influence of food before the experiment. Pacific oyster were exposed to the toxic dinoflagellate, A. fundyense, and the potentially toxic dinoflagellate, A. affine. When Pacific oyster were exposed to A. fundyense, SVMs increased over 10 times/hr at low cell densities of 20 cells/mL. SVMs increased again at $14.1{\pm}5.7times/hr$ at 500 cells/mL, and $27.9{\pm}11.1times/hr$ at the high cell density of 5,000 cells/mL. However, in the presence of A. affine, SVMs increased at $6.7{\pm}3.9times/hr$ until 300 cells/mL, while they increased greatly to $15.3{\pm}10.8times/hr$ at 1,000 cells/mL. The SVMs of Pacific oyster indicated differences depending on species for toxic dinoflagellates. Therefore, the SVMs of Pacific oyster could be useful for A. fundyense, but would bedifficult to apply for A. affine.

PM2.5 Simulations for the Seoul Metropolitan Area: (III) Application of the Modeled and Observed PM2.5 Ratio on the Contribution Estimation (수도권 초미세먼지 농도모사: (III) 관측농도 대비 모사농도 비율 적용에 따른 기여도 변화 검토)

  • Bae, Changhan;Yoo, Chul;Kim, Byeong-Uk;Kim, Hyun Cheol;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.445-457
    • /
    • 2017
  • In this study, we developed an approach to better account for uncertainties in estimated contributions from fine particulate matter ($PM_{2.5}$) modeling. Our approach computes a Concentration Correction Factor (CCF) which is a ratio of observed concentrations to baseline model concentrations. We multiply modeled direct contribution estimates with CCF to obtain revised contributions. Overall, the modeling system showed reasonably good performance, correlation coefficient R of 0.82 and normalized mean bias of 2%, although the model underestimated some PM species concentrations. We also noticed that model biases vary seasonally. We compared contribution estimates of major source sectors before and after applying CCFs. We observed that different source sectors showed variable magnitudes of sensitivities to the CCF application. For example, the total primary $PM_{2.5}$ contribution was increased $2.4{\mu}g/m^3$ or 63% after the CCF application. Out of a $2.4{\mu}g/m^3$ increment, line sources and area source made up $1.3{\mu}g/m^3$ and $0.9{\mu}g/m^3$ which is 92% of the total contribution changes. We postulated two major reasons for variations in estimated contributions after the CCF application: (1) monthly variability of unadjusted contributions due to emission source characteristics and (2) physico-chemical differences in environmental conditions that emitted precursors undergo. Since emissions-to-$PM_{2.5}$ concentration conversion rate is an important piece of information to prioritize control strategy, we examined the effects of CCF application on the estimated conversion rates. We found that the application of CCFs can alter the rank of conversion efficiencies of source sectors. Finally, we discussed caveats of our current approach such as no consideration of ion neutralization which warrants further studies.

Comparative Study on Removal Characteristics of Disinfection By-products by Air Stripping and Flotation Processes (탈기와 부상 공정에 의한 소독부산물의 제거특성에 관한 비교 연구)

  • Cha, Hwa-Jeong;Won, Chan-Hee;Lee, Kang-Hag;Oh, Won-Kyu;Kwak, Dong-Heui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.513-520
    • /
    • 2016
  • It is well known that volatile compounds including disinfection by-products as well as emissive dissolved gas in water can be removed effectively by air stripping. The micro-bubbles of flotation unit are so tiny as microns while the diameter of fine bubbles applied to air stripping is ranged from hundreds to thousands of micrometer. Therefore, the micro-bubbles in flotation can supply very wide specific surface area to transfer volatile matters through gas-liquid boundary. In addition, long emission time also can be gained to emit the volatile compound owing to the slow rise velocity of micro-bubbles in the flotation tank. There was a significant difference of the THMs species removal efficiency between air stripping and flotation experiments in this study. Moreover, the results of comparative experiments on the removal characteristics of THMs between air stripping and flotation revealed that the mass transfer coefficient, $K_La$ showed obvious differences. To overcome the limit of low removal efficiency of dissolved volatile compounds such as THMs in flotation process, the operation range of bubble volume concentration is required to higher than the operation condition of conventional particle separation.

A Study on the Genomic Patterns of SARS coronavirus using Bioinformtaics Techniques (바이오인포매틱스 기법을 활용한 SARS 코로나바이러스의 유전정보 연구)

  • Ahn, Insung;Jeong, Byeong-Jin;Son, Hyeon S.
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.522-526
    • /
    • 2007
  • Since newly emerged disease, the Severe Acute Respiratory Syndrome (SARS), spread from Asia to North America and Europe rapidly in 2003, many researchers have tried to determine where the virus came from. In the phylogenetic point of view, SARS virus has been known to be one of the genus Coronavirus, but, the overall conservation of SARS virus sequence was not highly similar to that of known coronaviruses. The natural reservoirs of SARS-CoV are not clearly determined, yet. In the present study, the genomic sequences of SARS-CoV were analyzed by bioinformatics techniques such as multiple sequence alignment and phylogenetic analysis methods as well multivariate statistical analysis. All the calculating processes, including calculations of the relative synonymous codon usage (RSCU) and other genomic parameters using 30,305 coding sequences from the two genera, Coronavirus, and Lentivirus, and one family, Orthomyxoviridae, were performed on SMP cluster in KISTI, Supercomputing Center. As a result, SARS_CoV showed very similar RSCU patterns with feline coronavirus on the both axes of the correspondence analysis, and this result showed more agreeable results with serological results for SARS_CoV than that of phylogenetic result itself. In addition, SARS_CoV, human immunodeficiency virus, and influenza A virus commonly showed the very low RSCU differences among each synonymous codon group, and this low RSCU bias might provide some advantages for them to be transmitted from other species into human beings more successfully. Large-scale genomic analysis using bioinformatics techniques may be useful in genetic epidemiology field effectively.

  • PDF

Desalinated underground seawater of Jeju Island (Korea) improves lipid metabolism in mice fed diets containing high fat and increases antioxidant potential in t-BHP treated HepG2 cells

  • Noh, Jung-Ran;Gang, Gil-Tae;Kim, Yong-Hoon;Yang, Keum-Jin;Lee, Chul-Ho;Na, O-Su;Kim, Gi-Ju;Oh, Won-Keun;Lee, Young-Don
    • Nutrition Research and Practice
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study was performed to investigate the effect of desalinated underground seawater (named as 'magma seawater', MSW) of Jeju Island in Korea on lipid metabolism and antioxidant activity. MSW was collected from underground of Han-Dong in Jeju Island, and freely given to high fat diet (HFD)-fed C57BL/6 mice for 10 weeks. Although there were no significant differences in the body weight changes and plasma lipid levels, hepatic triglyceride levels were significantly lower in the MSW group than in the normal tap water (TW)-drunken control group. Furthermore, the activity of fatty acid synthase (FAS) was significantly decreased and carnitine palmitoyltransferase (CPT) activity was increased in MSW group compared to TW group. Similarly, real-time PCR analysis revealed that mRNA expressions of lipogenic genes were lowered in MSW groups compared to the control group. In a morphometric observation on the liver tissue, accumulation of fats was remarkably reduced in MSW group. Meanwhile, in vitro assay, tree radical scavenging activity measured by using diphenylpicrylhydrazyl (DPPH) was increased in MSW group. The 2'-7'-dichlorofluorescein diacetate (DCF-DA) staining followed with fluorescent microscopy showed a low intensity of fluorescence in MSW-treated HepG2 cells, compared to TW-treated HepG2 cells, which indicated that the production of reactive oxygen species by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was decreased by MSW treatment. The antioxidant effect of MSW on t-BHP-induced oxidative stress in HepG2 cells was supported by the increased activities of intracellular antioxidant enzymes such as catalase and glutathione reductase. From these results, we speculate that MSW has an inhibitory effect on lipogenesis in liver and might play a protective role against cell damage by t-BHP-induced oxidative stress.

Comparison of Triglyceride Structures of Human Milk, Infant Formulas and Market Milk (인유, 조제 분유 및 시유의 트리글리세리드 구조의 비교)

  • Yoon, Tai-Heon;Im, Kyung-Ja
    • Journal of the Korean Applied Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 1985
  • The fatty acid composition acyl carbon atoms and species of triglycerides from human mature milk, infant formulas (modified milk formula) and market milk were determined by argentation thin-lager and gas-liquid chromatography. Short-chain fatty acids which sere not detected in human milk were present in very small amount in modified milk formula and market milk. The levels for 5:0, 22:0 and 24:0 in modified milk formula and for 8:0, 10:0, 18:0, 22:0 and 24:0 in market milk were significantly higher than those in human milk. The levels for 10:0 and 14:0 in modified milk formula and for 12:0 and 20:0 in market milk were significantly lower than those in human milk. The relative percent of $18:2{\omega}6$ in human milk, modified milk formula and market milk were on average 12.0, 15.0 and 3.8 percents respectively. Human milk contained significantly higher proportions of both ${\omega}6-and{\omega}3-derived$ long chain polyunsaturated fatty acids than modified milk formula and market milk. The major triglycerides of human milk, modified milk formula and market milk made by the glycerides with 44-52, 50-54 and 36-40 acyl carbon atoms, respectively. There were significant differences in levels for total number of acyl carbon atoms per glycerid molecule of human milk, modified milk formula and market milk. In comparison with human milk, modified milk formula and market milk showed significantly higher levels for saturates but significantly lower levels for trienes to polyenes.