• Title/Summary/Keyword: Species associations

Search Result 91, Processing Time 0.027 seconds

Health Effects of Chronic Arsenic Exposure

  • Hong, Young-Seoub;Song, Ki-Hoon;Chung, Jin-Yong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.5
    • /
    • pp.245-252
    • /
    • 2014
  • Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments.

Toxicity and Carcinogenicity of Dichlorodiphenyltrichloroethane (DDT)

  • Harada, Takanori;Takeda, Makio;Kojima, Sayuri;Tomiyama, Naruto
    • Toxicological Research
    • /
    • v.32 no.1
    • /
    • pp.21-33
    • /
    • 2016
  • Dichlorodiphenyltrichloroethane (DDT) is still used in certain areas of tropics and subtropics to control malaria and other insect-transmitted diseases. DDT and its metabolites have been extensively studied for their toxicity and carcinogenicity in animals and humans and shown to have an endocrine disrupting potential affecting reproductive system although the effects may vary among animal species in correlation with exposure levels. Epidemiologic studies revealed either positive or negative associations between exposure to DDT and tumor development, but there has been no clear evidence that DDT causes cancer in humans. In experimental animals, tumor induction by DDT has been shown in the liver, lung, and adrenals. The mechanisms of hepatic tumor development by DDT have been studied in rats and mice. DDT is known as a non-genotoxic hepatocarcinogen and has been shown to induce microsomal enzymes through activation of constitutive androstane receptor (CAR) and to inhibit gap junctional intercellular communication (GJIC) in the rodent liver. The results from our previously conducted 4-week and 2-year feeding studies of p,p'-DDT in F344 rats indicate that DDT may induce hepatocellular eosinophilic foci as a result of oxidative DNA damage and leads them to hepatic neoplasia in combination with its mitogenic activity and inhibitory effect on GJIC. Oxidative stress could be a key factor in hepatocarcinogenesis by DDT.

A Study for Field Trips on the Vegetation Types and Plant Growth Habits at the Old Road Naori's Hill Hwasun (야외학습을 위한 화순 너릿재 옛길의 식물상과 생활형에 관한 연구)

  • Lee, Mee Kyoung
    • Journal of Integrative Natural Science
    • /
    • v.1 no.2
    • /
    • pp.160-179
    • /
    • 2008
  • Field classes are necessary to grow the ability of and an attitude toward exploring nature and to shape the basic concept of natural science. I tried to develop a site for field classes and the old road Naori's hill is an ideal place with convenient traffic and established youth camps. As a result the vegetation was divided into five associations and communities. The vegetation units obtained in the present study were as follow: Quercus acutissima community, Pinus densiflora community, Pinus densiflora-Quercus acutissima community, Quercus acutissima-Pinus densiflora community, and Quercus mongolica community. In all survey areas 100 family 336 genus 587 species of palants was found. Furthermore, it provides lots of plants throughout the seasons. Not only the flora but also flowering phenology, variety of floral color and growth habits can be used as teaching items. Incorporation of diverse knowledge of plants at the old road Naori's hill into biology teaching will give students academic stimuli and teachers an opportunity of retraining. With a combination of use of visual instruments, the purpose of conceptual and exploring biology is more easily achieved.

  • PDF

River Ecosystem and Floristic Characterization of Riparian Zones at the Youngjeong River, Sacheon-ci, Korea (사천시 용정천에서 하천 생태계와 하안단구 지역의 수변식물상)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.301-309
    • /
    • 2017
  • This study is examined river naturality and vegetative composition of river riparian zones to identify their most important sources of variation. Information on plant species cover and on physical characteristics that occur at upper, medium, and low areas was collected for 30 riparian plots located throughout the Youngjeong River in Korea. The riparian areas of river banks are dominated by mixed sediment and the vegetation is composed of herbs, shrub, and trees. The floristic characterization of riparian at this river during 2015 season was identified with a total of 28 families, 72 genera, 75 species, 13 varieties, 23 associations. The vegetations of low water's edge and flood way at upper region were naturally formed various vegetation communities by natural erosion. Forty plant species were identified around the upper region, where the dominant growth form was mostly trees. The flood way vegetation at middle region was both of natural vegetation and artificial vegetation. Land uses in riparian zones river levee at low region were bush or grassland as natural floodplain. The values of cover-abundance at upper, middle, and low region were total 9.26, 7.24, and 7.56, respectively. Grasses and forbs at the Youngjeong River have similar cover-abundance values. Recent, many riparian areas of this river have been lost or degraded for commercial and industrial developments. Thus, monitoring for biological diversity of plant species of this river is necessary for an adaptive management approach and the successful implementation of ecosystem management.

Changes in benthic macroinvertebrates communities in response to biological mosquito larvae control techniques (생물학적 모기유충 방제기법 적용에 따른 저서성 대형무척추동물 군집 변동)

  • Han, Jung Soo;An, Chae Hui;Choi, Jun Kil;Lee, Hwang Goo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.600-606
    • /
    • 2019
  • The study site was the camping area in the Hwarang Amusement Park in Danwon-gu, Ansan-si. Study activities were conducted three times a week from July 20, 2018, to August 1, 2018. A control site, natural enemy site, and Bti(Bacillus thuringiensis israelensis) site were selected. The analyses included habitat environment and species composition analyses, community analysis, correlation analysis, and similarity analysis. The water quality analysis found no significant difference in water quality over the study period (p>0.05). A total of 4,818 individuals, 38 species, 22 families, and 11 orders were observed during the study period. The natural enemy site observed during the study period had a similar species composition as the control site. The Bti site differed from other sites by the low number of species and individuals present. According to the community analysis, the natural enemy site was a stable community and the Bti site was an unstable community during the study period. Diptera showed negative associations with temperature and water temperature and mosquito larvae showed significant correlations with temperature and water temperature. The similarity analysis showed that the control site and the natural enemy site were 61.11-73.68% and the Bti site showed 30.77-56.00% similarity.

A Review of Host Plants of Cerambycidae (Coleoptera: Chrysomeloidea) with new Host Records for Fourteen Cerambycids, Including the Asian Longhorn Beetle (Anoplophora glabripennis Motschulsky), in Korea (유리알락하늘소를 포함한 14종 하늘소의 새로운 기주식물 보고 및 한국산 하늘소과(딱정벌레목: 잎벌레상과)의 기주식물 재검토)

  • Lim, Jongok;Jung, Su-Young;Lim, Jong-Su;Jang, Jin;Kim, Kyung-Mi;Lee, You-Mi;Lee, Bong-Woo
    • Korean journal of applied entomology
    • /
    • v.53 no.2
    • /
    • pp.111-133
    • /
    • 2014
  • A revised checklist of host plants for 181 species belonging to 103 genera in six subfamilies of Cerambycidae (Coleoptera: Chrysomeloidea) in Korea is provided on the basis of the results of field surveys and literature review. A total of 14 new cerambycid-host associations are confirmed and the Manchurian striped maple, Acer tegmentosum Maxim. (Aceraceae), is listed as a new host of the Asian longhorn beetle, Anoplophora glabripennis (Motschulsky). The names of more than 170 host plants species belonging to 107 genera in 44 families are compiled. Among them, four families (Ulmaceae, Pinaceae, Fagaceae and Betulaceae) are confirmed as the main host families (more than 23%) of most of the cerambycid species. All invalid scientific names and Korean names of plants and cerambycids in the previous literature are corrected in the present paper.

Potential Impact of Climate Change on Distribution of Warm Temperate Evergreen Broad-leaved Trees in the Korean Peninsula (기후변화에 따른 한반도 난대성 상록활엽수 잠재서식지 분포 변화)

  • Park, Seon Uk;Koo, Kyung Ah;Kong, Woo-Seok
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.2
    • /
    • pp.201-217
    • /
    • 2016
  • We accessed the climate change effects on the distributions of warm-evergreen broad-leaved trees (shorten to warm-evergreens below) in the Korean Peninsula (KP). For this, we first selected nine warm-evergreens with the northern distribution limits at mid-coastal areas of KP and climate variables, coldest month mean temperature and coldest quarter precipitation, known to be important for warm-evergreens growth and survival. Next, species distribution models (SDMs) were constructed with generalized additive model (GAM) algorithm for each warm-evergreen. SDMs projected the potential geographical distributions of warm evergreens under current and future climate conditions in associations with land uses. The nine species were categorized into three groups (mid-coastal, southwest-coastal, and southeast-inland) based on their current spatial patterns. The effects of climate change and land uses on the distributions depend on the current spatial patterns. As considering land uses, the potential current habitats of all warm-evergreens decrease over 60%, showing the highest reduction rate for the Kyungsang-inland group. SDMs forecasted the expansion of potential habitats for all warm-evergreens under climate changes projected for 2050 and 2070. However, the expansion patterns were different among three groups. The spatial patterns of projected coldest quarter precipitation in 2050 and 2070 could account for such differences.

  • PDF

Biochemical Adaptation of the Oriental Tobacco Budworm, Helicoverpa assulta, to Host-plant Defensive Compounds (기주식물 방어물질에 대한 담배나방의 생화학적 적응)

  • Ahn, Seung-Joon
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.143-154
    • /
    • 2022
  • Plant secondary metabolites play an important role in insect-plant interactions. Herbivorous insects have various strategies to cope with the plant defensive compounds. Polyphagous insects feed on a wide variety of plant species, and their detoxification mechanisms are more complex since they tend to respond to a large array of different plant-derived chemicals. Alternatively, oligophagous insects specialize on only a few related plant species and may be expected to have a more efficient form of adaptation. This adaptation could involve either the production of large quantities of enzymes to detoxify their defensive compounds or the sequestration of the compounds or their metabolites. The oriental tobacco budworm, Helicoverpa assulta, is a specialist herbivore, feeding on a few plants of Solanaceae, such as tobacco and hot pepper. Understanding its host-plant adaptation not provides an important insight on physiology, ecology and evolution of specialist herbivores, but also gives a clue to develop management strategies of the pest species such as H. assulta. This paper briefly reviews the specialist, H. assulta, focusing on its host range, larval associations with the host plants, and detoxification mechanisms to nicotine and capsaicin, two characteristic defensive compounds derived from its two major host plants, tobacco and hot pepper, respectively. It summarizes the relevant research over the last half century and provides a future perspective on this subject.

Computational Prediction of Alzheimer's and Parkinson's Disease MicroRNAs in Domestic Animals

  • Wang, Hai Yang;Lin, Zi Li;Yu, Xian Feng;Bao, Yuan;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.782-792
    • /
    • 2016
  • As the most common neurodegenerative diseases, Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the main health concerns for the elderly population. Recently, microRNAs (miRNAs) have been used as biomarkers of infectious, genetic, and metabolic diseases in humans but they have not been well studied in domestic animals. Here we describe a computational biology study in which human AD- and PD-associated miRNAs (ADM and PDM) were utilized to predict orthologous miRNAs in the following domestic animal species: dog, cow, pig, horse, and chicken. In this study, a total of 121 and 70 published human ADM and PDM were identified, respectively. Thirty-seven miRNAs were co-regulated in AD and PD. We identified a total of 105 unrepeated human ADM and PDM that had at least one 100% identical animal homolog, among which 81 and 54 showed 100% sequence identity with 241 and 161 domestic animal miRNAs, respectively. Over 20% of the total mature horse miRNAs (92) showed perfect matches to AD/PD-associated miRNAs. Pigs, dogs, and cows have similar numbers of AD/PD-associated miRNAs (63, 62, and 59). Chickens had the least number of perfect matches (34). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses suggested that humans and dogs are relatively similar in the functional pathways of the five selected highly conserved miRNAs. Taken together, our study provides the first evidence for better understanding the miRNA-AD/PD associations in domestic animals, and provides guidance to generate domestic animal models of AD/PD to replace the current rodent models.

A Restricted Partition Method to Detect Single Nucleotide Polymorphisms for a Carcass Trait in Hanwoo

  • Lee, Ji-Hong;Kim, Dong-Chul;Kim, Jong-Joo;Lee, Jea-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1525-1528
    • /
    • 2011
  • The purpose of this study was to detect SNPs that were responsible for a carcass trait in Hanwoo populations. A non-parametric model applying a restricted partition method (RPM) was used, which exploited a partitioning algorithm considering statistical criteria for multiple comparison testing. Phenotypic and genotypic data were obtained from the Hanwoo Improvement Center, National Agricultural Cooperation Federation, Korea, in which the pedigree structure comprised 229 steers from 16 paternal half-sib proven sires that were born in Namwon or Daegwanryong livestock testing station between spring of 2002 and fall of 2003. A carcass trait, longissimus dorsi muscle area for each steer was measured after slaughter at approximately 722 days. Three SNPs (19_1, 18_4 and 28_2) near the microsatellite marker ILSTS035 on BTA6, around which the quantitative trait loci (QTL) for meat quality were previously detected, were used in this study. The RPM analyses resulted in two significant interaction effects between SNPs (19_1 and 18_4) and (19_1 and 28_2) at ${\alpha}$ = 0.05 level. However, under a general linear (parametric) model no interaction effect between any pair of the three SNPs was detected, while only one main effect for SNP19_1 was found for the trait. Also, under another non-parametric model using a multifactor dimensionality reduction (MDR) method, only one interaction effect of the two SNPs (19_1 and 28_2) explained the trait significantly better than the parametric model with the main effect of SNP19_1. Our results suggest that RPM is a good alternative to model choices that can find associations of the interaction effects of multiple SNPs for quantitative traits in livestock species.