DOI QR코드

DOI QR Code

Changes in benthic macroinvertebrates communities in response to biological mosquito larvae control techniques

생물학적 모기유충 방제기법 적용에 따른 저서성 대형무척추동물 군집 변동

  • Han, Jung Soo (Department of Biological Science, College of Science & Engineering, Sangji University) ;
  • An, Chae Hui (Department of Biological Science, College of Science & Engineering, Sangji University) ;
  • Choi, Jun Kil (Department of Biological Science, College of Science & Engineering, Sangji University) ;
  • Lee, Hwang Goo (Department of Biological Science, College of Science & Engineering, Sangji University)
  • Received : 2019.11.12
  • Accepted : 2019.11.26
  • Published : 2019.12.31

Abstract

The study site was the camping area in the Hwarang Amusement Park in Danwon-gu, Ansan-si. Study activities were conducted three times a week from July 20, 2018, to August 1, 2018. A control site, natural enemy site, and Bti(Bacillus thuringiensis israelensis) site were selected. The analyses included habitat environment and species composition analyses, community analysis, correlation analysis, and similarity analysis. The water quality analysis found no significant difference in water quality over the study period (p>0.05). A total of 4,818 individuals, 38 species, 22 families, and 11 orders were observed during the study period. The natural enemy site observed during the study period had a similar species composition as the control site. The Bti site differed from other sites by the low number of species and individuals present. According to the community analysis, the natural enemy site was a stable community and the Bti site was an unstable community during the study period. Diptera showed negative associations with temperature and water temperature and mosquito larvae showed significant correlations with temperature and water temperature. The similarity analysis showed that the control site and the natural enemy site were 61.11-73.68% and the Bti site showed 30.77-56.00% similarity.

본 연구는 2018년 7월 20일부터 2018년 8월 1일까지 안산시 단원구에 위치한 화랑유원지 오토캠핑장의 집수정에서 연구를 실시하였으며, 조사지점은 기법별로 대조지점, 천적지점, Bti 지점을 선정하였다. 서식처 환경 분석 및 채집된 저서성 대형무척추동물을 대상으로 종조성, 군집분석, 상관성 분석, 유사도 분석을 실시하여 잔물땡땡이, Bti가 저서성 대형무척추동물에 미치는 영향을 파악하였다. 서식처 환경 분석 결과, 수질항목은 지점간 유의한 차이는 없는 것으로 분석되었으며(p>0.05), 하상구조 및 식물군락이 유사하여 서식처 특성에 의한 종조성의 차이는 적을 것으로 판단된다. 조사시간 동안 총 11목 22과 38종 4,818개체가 출현하였으며, 천적지점은 대조지점과 비교적 유사한 종조성을 나타내는 것으로 분석되었다. 반면 Bti 지점은 다른 지점에 비해 단순한 종조성을 나타내었으며, 파리목의 종수 및 개체수가 가장 빈약한 것으로 분석되었다. 군집 분석 결과, 조사기간 동안 Bti 지점에서 불안정한 군집양상을 나타내었으며, 천적지점은 비교적 안정적인 군집양상을 나타내는 것으로 분석되었다. 파리목과 모기유충을 대상으로 수질과의 상관성 분석을 실시한 결과, 파리목과 기온, 수온은 음의 경향성을 나타내었으며, 모기유충과 기온은 -0.610, 수온은 -0.674로 유의한 음의 상관성을 나타내는 것으로 분석되었다 출현종을 대상으로 유사도 분석을 실시한 결과, 대조지점과 천적지점은 조사시기별 61.11~73.68%, Bti 지점은 30.77~56.00%의 유사도를 나타내어 천적지점에 비해 대조지점과 유사도가 낮은 것으로 분석되었다. 본 연구는 단기간의 연구 결과로 습지유형 등을 고려하여, 다양한 환경에서 생물학적 모기유충 방제 기법이 저서성 대형무척추동물에게 미치는 영향에 대한 장기적인 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Baek HM, DG Kim, MJ Baek, CY Lee, HJ Kang, MC Kim and YJ Bae. 2014. Predation efficiency and preference of the Hydrophilid water beetle Hydrochara affinis (Coleoptera: Hydrophilidae) larvae on two mosquitos Culex pipiens molestus and Ochlerotatus togoi under laboratory conditions. Korean J. Environ. Biol. 32:112-117. https://doi.org/10.11626/KJEB.2014.32.2.112
  2. Bayoh MN and SW Lindsay. 2004. Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med. Vet. Entomol. 18:174-179. https://doi.org/10.1111/j.0269-283X.2004.00495.x
  3. Boyce R, A Lenhart, A Kroeger, R Velayudhan, B Roberts and O Horstick. 2013. Bacillus thuringiensis israelensis (BTI) for the control of dengue vector: systematic literature review. Trop. Med. Int. Health 18:564-577. https://doi.org/10.1111/tmi.12087
  4. Cummins KW. 1973. Trophic relation of aquatic insects. Ann. Rev. Entomol. 18:183-206. https://doi.org/10.1146/annurev.en.18.010173.001151
  5. Jakob C and B Poulin. 2016. Indirect effects of mosquito control using bti on dragonflies and damselflies (Odonata) in the Camargue. Insect Conserv. Divers. 9:161-169. https://doi.org/10.1111/icad.12155
  6. Jeong HM, HR Kim and YH You. 2013. A study on the ecosystem service of wetland 1. effective biological control of the mosquito larvae using native fishes. J. Wet. Res. 15:19-24. https://doi.org/10.17663/JWR.2013.15.1.019
  7. Jeong SJ. 2018. Mosquito Control by the Release of Fish Predators Misgurnus mizolepis in Natural Mosquito Breeding Rice Paddies. University of Kosin Press, Busan.
  8. Kastel A, S Allgeier and CA Bruhl. 2017. Decreasing Bacillus thuringiensis israelensis sensitivity of Chironomus riparius larvae with age indicates potential environmental risk for mosquito control. Sci. Rep. 7:13565. https://doi.org/10.1038/s41598-017-14019-2
  9. Katayama N, T Goto, F Narushima, T Amano, H Kobori and T Miyashita. 2013. Indirect positive effects of argricultural modernization on the abundance of Japanese tree tadpoles in rice fields through the release from predators. Aquat. Ecol. 47:225-234. https://doi.org/10.1007/s10452-013-9437-0
  10. Kil MR, DA Kim, SK Paek, JS Kim, SY Choi, DY Jin, YN Youn, IC Hwang, M Ohba and YM Yu. 2008. Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 isolate against mosquito larva. Korean J. Appl. Entomol. 47:457-465. https://doi.org/10.5656/KSAE.2008.47.4.457
  11. Kumar R and JS Hwang. 2006. Larvicidal efficiency of aquatic predators: a perspective for mosquito biocontrol. Zool. Stud. 45:447-466.
  12. Kwon OK. 1990. Illustrated Encyclopedia of Fauna & Flora of Korea. Mollusca (I). Ministry of Education Press, Seoul.
  13. Lee TB. 2003. Coloured Flora of Korea. Hyangmunsa Publisher Press, Seoul.
  14. Margalef R. 1958. Information theory in ecology. Gen. Syst. 3:36-71.
  15. McCafferty WP. 1981. Aquatic Entomology: The Fisherman's and Ecologist's Illustrated Guide to Insects and Their Relatives. Science Book International, Boston, MA.
  16. McNaughton SJ. 1967. Relationship among functional properties of California grassland. Nature 216:168-169. https://doi.org/10.1038/216168b0
  17. Merritt RW, KW Cummins and MB Berg. 2008. An Introduction to the Aquatic Insects of North America (4th ed.). Kendall Hunt Publishing, Dubuque, IA.
  18. Pielou EC. 1975. Ecological Diversity. John Wiley & Sons Press, New York.
  19. Shaalan EAS and DV Canyon. 2009. Aquatic insect predators and mosquito control. Trop. Biomed. 26:223-261.
  20. Shaalan EA, DV Canyon, M Reinhold, WFM Yones, H Abdel - Wahab and A Mansour. 2007. A mosquito predator survey in townsville, Australia and an assessment of Diplonychus sp. and Anisops sp. predatorial capacity against Culex annulirostris mosquito immatures. J. Vector Ecol. 32:16-21. https://doi.org/10.3376/1081-1710(2007)32[16:AMPSIT]2.0.CO;2
  21. Shannon CE and W Weaver. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
  22. Song GR. 1995. Systematics of the Hirudinea (Annelida) in Korea. University of Korea Press, Seoul.
  23. Verschoyle RD and WN Aldridge. 1980. Structure activity relationship of some pyrethroids in rats. Arch. Toxicol. 45:325-329. https://doi.org/10.1007/BF00293813
  24. Won DH, SJ Kown and YC Jun. 2005. Aquatic Insects of Korea. Korea Ecosystem Service Press, Seoul.
  25. Yang BG. 2004. Current situation of re-emerging malaria and elimination plan in Republic of Korea. J. Korean Med. Assoc. 47:686-688. https://doi.org/10.5124/jkma.2004.47.7.686
  26. Yu HS, DK Lee and WJ Lee. 1982. Mosquito control by the release of fish predator, Aphyocypris chinensis in natural mosquito breeding habitats of rice paddies and stream seepage in South Korea. Korean J. Entomol. 12:61-67.
  27. Zequi JAC and J Lopes. 2007. Biological control of Culex (Culex) saltanensis dyar, (Diptera, Culicidae) through Bacillus thuringiensis israelensis in laboratory and field conditions. Rev. Bras. Zool. 24:164-168. https://doi.org/10.1590/S0101-81752007000100020