• Title/Summary/Keyword: Speaker recognition

Search Result 556, Processing Time 0.026 seconds

Speaker Adaptation Using Linear Transformation Network in Speech Recognition (선형 변환망을 이용한 화자적응 음성인식)

  • 이기희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.90-97
    • /
    • 2000
  • This paper describes an speaker-adaptive speech recognition system which make a reliable recognition of speech signal for new speakers. In the Proposed method, an speech spectrum of new speaker is adapted to the reference speech spectrum by using Parameters of a 1st linear transformation network at the front of phoneme classification neural network. And the recognition system is based on semicontinuous HMM(hidden markov model) which use the multilayer perceptron as a fuzzy vector quantizer. The experiments on the isolated word recognition are performed to show the recognition rate of the recognition system. In the case of speaker adaptation recognition, the recognition rate show significant improvement for the unadapted recognition system.

  • PDF

Review And Challenges In Speech Recognition (ICCAS 2005)

  • Ahmed, M.Masroor;Ahmed, Abdul Manan Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1705-1709
    • /
    • 2005
  • This paper covers review and challenges in the area of speech recognition by taking into account different classes of recognition mode. The recognition mode can be either speaker independent or speaker dependant. Size of the vocabulary and the input mode are two crucial factors for a speech recognizer. The input mode refers to continuous or isolated speech recognition system and the vocabulary size can be small less than hundred words or large less than few thousands words. This varies according to system design and objectives.[2]. The organization of the paper is: first it covers various fundamental methods of speech recognition, then it takes into account various deficiencies in the existing systems and finally it discloses the various probable application areas.

  • PDF

A Classified Space VQ Design for Text-Independent Speaker Recognition (문맥 독립 화자인식을 위한 공간 분할 벡터 양자기 설계)

  • Lim, Dong-Chul;Lee, Hanig-Sei
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.673-680
    • /
    • 2003
  • In this paper, we study the enhancement of VQ (Vector Quantization) design for text independent speaker recognition. In a concrete way, we present a non-iterative method which makes a vector quantization codebook and this method performs non-iterative learning so that the computational complexity is epochally reduced The proposed Classified Space VQ (CSVQ) design method for text Independent speaker recognition is generalized from Semi-noniterative VQ design method for text dependent speaker recognition. CSVQ contrasts with the existing desiEn method which uses the iterative learninE algorithm for every traininE speaker. The characteristics of a CSVQ design is as follows. First, the proposed method performs the non-iterative learning by using a Classified Space Codebook. Second, a quantization region of each speaker is equivalent for the quantization region of a Classified Space Codebook. And the quantization point of each speaker is the optimal point for the statistical distribution of each speaker in a quantization region of a Classified Space Codebook. Third, Classified Space Codebook (CSC) is constructed through Sample Vector Formation Method (CSVQ1, 2) and Hyper-Lattice Formation Method (CSVQ 3). In the numerical experiment, we use the 12th met-cepstrum feature vectors of 10 speakers and compare it with the existing method, changing the codebook size from 16 to 128 for each Classified Space Codebook. The recognition rate of the proposed method is 100% for CSVQ1, 2. It is equal to the recognition rate of the existing method. Therefore the proposed CSVQ design method is, reducing computational complexity and maintaining the recognition rate, new alternative proposal and CSVQ with CSC can be applied to a general purpose recognition.

Speaker Adaptation Using i-Vector Based Clustering

  • Kim, Minsoo;Jang, Gil-Jin;Kim, Ji-Hwan;Lee, Minho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2785-2799
    • /
    • 2020
  • We propose a novel speaker adaptation method using acoustic model clustering. The similarity of different speakers is defined by the cosine distance between their i-vectors (intermediate vectors), and various efficient clustering algorithms are applied to obtain a number of speaker subsets with different characteristics. The speaker-independent model is then retrained with the training data of the individual speaker subsets grouped by the clustering results, and an unknown speech is recognized by the retrained model of the closest cluster. The proposed method is applied to a large-scale speech recognition system implemented by a hybrid hidden Markov model and deep neural network framework. An experiment was conducted to evaluate the word error rates using Resource Management database. When the proposed speaker adaptation method using i-vector based clustering was applied, the performance, as compared to that of the conventional speaker-independent speech recognition model, was improved relatively by as much as 12.2% for the conventional fully neural network, and by as much as 10.5% for the bidirectional long short-term memory.

An Enhanced Text-Prompt Speaker Recognition Using DTW (DTW를 이용한 향상된 문맥 제시형 화자인식)

  • 신유식;서광석;김종교
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.86-91
    • /
    • 1999
  • This paper presents the text-prompt method to overcome the weakness of text-dependent and text-independent speaker recognition. Enhanced dynamic time warping for speaker recognition algorithm is applied. For the real-time processing, we use a simple algorithm for end-point detection without increasing computational complexity. The test shows that the weighted-cepstrum is most proper for speaker recognition among various speech parameters. As the experimental results of the proposed algorithm for three prompt words, the speaker identification error rate is 0.02%, and when the threshold is set properly, false rejection rate is 1.89%, false acceptance rate is 0.77% and verification total error rate is 0.97% for speaker verification.

  • PDF

Speaker Adaptation Using Neural Network in Continuous Speech Recognition (연속 음성에서의 신경회로망을 이용한 화자 적응)

  • 김선일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.11-15
    • /
    • 2000
  • Speaker adaptive continuous speech recognition for the RM speech corpus is described in this paper. Learning of hidden markov models for the reference speaker is performed for the training data of RM corpus. For the evaluation, evaluation data of RM corpus are used. Parts of another training data of RM corpus are used for the speaker adaptation. After dynamic time warping of another speaker's data for the reference data is accomplished, error back propagation neural network is used to transform the spectrum between speakers to be recognized and reference speaker. Experimental results to get the best adaptation by tuning the neural network are described. The recognition ratio after adaptation is substantially increased 2.1 times for the word recognition and 4.7 times for the word accuracy for the best.

  • PDF

Speaker Normalization using Gaussian Mixture Model for Speaker Independent Speech Recognition (화자독립 음성인식을 위한 GMM 기반 화자 정규화)

  • Shin, Ok-Keun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.437-442
    • /
    • 2005
  • For the purpose of speaker normalization in speaker independent speech recognition systems, experiments are conducted on a method based on Gaussian mixture model(GMM). The method, which is an improvement of the previous study based on vector quantizer, consists of modeling the probability distribution of canonical feature vectors by a GMM with an appropriate number of clusters, and of estimating the warp factor of a test speaker by making use of the obtained probabilistic model. The purpose of this study is twofold: improving the existing ML based methods, and comparing the performance of what is called 'soft decision' method with that of the previous study based on vector quantizer. The effectiveness of the proposed method is investigated by recognition experiments on the TIMIT corpus. The experimental results showed that a little improvement could be obtained tv adjusting the number of clusters in GMM appropriately.

Speaker Separation Based on Directional Filter and Harmonic Filter (Directional Filter와 Harmonic Filter 기반 화자 분리)

  • Baek, Seung-Eun;Kim, Jin-Young;Na, Seung-You;Choi, Seung-Ho
    • Speech Sciences
    • /
    • v.12 no.3
    • /
    • pp.125-136
    • /
    • 2005
  • Automatic speech recognition is much more difficult in real world. Speech recognition according to SIR (Signal to Interface Ratio) is difficult in situations in which noise of surrounding environment and multi-speaker exists. Therefore, study on main speaker's voice extractions a very important field in speech signal processing in binaural sound. In this paper, we used directional filter and harmonic filter among other existing methods to extract the main speaker's information in binaural sound. The main speaker's voice was extracted using directional filter, and other remaining speaker's information was removed using harmonic filter through main speaker's pitch detection. As a result, voice of the main speaker was enhanced.

  • PDF

Evaluation of Frequency Warping Based Features and Spectro-Temporal Features for Speaker Recognition (화자인식을 위한 주파수 워핑 기반 특징 및 주파수-시간 특징 평가)

  • Choi, Young Ho;Ban, Sung Min;Kim, Kyung-Wha;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • In this paper, different frequency scales in cepstral feature extraction are evaluated for the text-independent speaker recognition. To this end, mel-frequency cepstral coefficients (MFCCs), linear frequency cepstral coefficients (LFCCs), and bilinear warped frequency cepstral coefficients (BWFCCs) are applied to the speaker recognition experiment. In addition, the spectro-temporal features extracted by the cepstral-time matrix (CTM) are examined as an alternative to the delta and delta-delta features. Experiments on the NIST speaker recognition evaluation (SRE) 2004 task are carried out using the Gaussian mixture model-universal background model (GMM-UBM) method and the joint factor analysis (JFA) method, both based on the ALIZE 3.0 toolkit. Experimental results using both the methods show that BWFCC with appropriate warping factor yields better performance than MFCC and LFCC. It is also shown that the feature set including the spectro-temporal information based on the CTM outperforms the conventional feature set including the delta and delta-delta features.

Text-dependent Speaker Recognition System Using DTW & VQ (VQ와 DTW를 이용한 문장 의존형 화자인식 시스템)

  • Jung JongSoon;Oh SeYoung;Bae MyungJin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.97-103
    • /
    • 2001
  • The speaker recognition method using DTW algorithm has the problem that is reducing the performance of the speaker recognition system as the time variation. So there are many proposed algorithms to solve these problems. This paper proposes the new method If make the reference pattern that is acceptable to intra-speaker variation by reference pattern normalization. And to avoid reducing performance of speaker recognition system, we use the modified reference pattern to recognize the system user. The used methods in this paper are VQ and DTW. As the result of simulation we can obtain the $97.5\%$ of recognition accuracy rate.

  • PDF