KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.1
/
pp.216-238
/
2023
In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.
Journal of The Korean Society of Agricultural Engineers
/
v.65
no.1
/
pp.1-13
/
2023
Various techniques for bias correction and statistical downscaling have been developed to overcome the limitations related to the spatial and temporal resolution and error of climate change scenario data required in various applied research fields including agriculture and water resources. In this study, the characteristics of three different statistical dowscaling methods (i.e., SQM, SDQDM, and BCSA) provided by AIMS were summarized, and climate change scenarios produced by applying each method were comparatively evaluated. In order to compare the average rainfall characteristics of the past period, an index representing the average rainfall characteristics was used, and the reproducibility of extreme weather conditions was evaluated through the abnormal climate-related index. The reproducibility comparison of spatial distribution and variability was compared through variogram and pattern identification of spatial distribution using the average value of the index of the past period. For temporal reproducibility comparison, the raw data and each detailing technique were compared using the transition probability. The results of the study are presented by quantitatively evaluating the strengths and weaknesses of each method. Through comparison of statistical techniques, we expect that the strengths and weaknesses of each detailing technique can be represented, and the most appropriate statistical detailing technique can be advised for the relevant research.
Kim, Hea-Jung;Kwak, Hwa-Ryun;Kim, Sang-il;Choi, Young-Jean
The Korean Journal of Applied Statistics
/
v.28
no.6
/
pp.1275-1288
/
2015
A microscale weather analysis module (about 1km or less) is a microscale numerical weather prediction model designed for operational forecasting and atmospheric research needs such as radiant energy, thermal energy, and humidity. The accuracy of the module is directly related to the usefulness and quality of real-time microscale weather information service in the metropolitan area. This paper suggests an object based verification method useful for spatio-temporal evaluation of the accuracy of the microscale weather analysis module. The method is a graphical method comprised of three steps that constructs a lattice field of evaluation statistics, merges and identifies objects, and evaluates the accuracy of the module. We develop lattice fields using various evaluation spatio-temporal statistics as well as an efficient object identification algorithm that conducts convolution, masking, and merging operations to the lattice fields. A real data application demonstrates the utility of the verification method.
This paper detected the characteristics of motion vector to support efficient content -based video search of video. Traditionally, the present frame of a video was divided into blocks of equal size and BMA (block matching algorithm) was used, which predicts the motion of each block in the reference frame on the time axis. However, BMA has several restrictions and vectors obtained by BMA are sometimes different from actual motions. To solve this problem, the foil search method was applied but this method is disadvantageous in that it has to make a large volume of calculation. Thus, as an alternative, the present study extracted the Spatio-Temporal characteristics of Motion Vector Spatio-Temporal Correlations (MVSTC). As a result, we could predict motion vectors more accurately using the motion vectors of neighboring blocks. However, because there are multiple reference block vectors, such additional information should be sent to the receiving end. Thus, we need to consider how to predict the motion characteristics of each block and how to define the appropriate scope of search. Based on the proposed algorithm, we examined motion prediction techniques for motion compensation and presented results of applying the techniques.
A MVC (Multi-view Video Coding) method, which uses both an illumination change-adaptive ME (Motion Estimation)/DC (Motion Compensation) and a 2D (Dimensional) direct mode, is proposed. Firstly, a new SAD (Sum of Absolute Difference) measure for ME/MC is proposed to compensate the Luma pixel value changes for spatio-temporal motion vector prediction. Illumination change-adaptive (ICA) ME/MC uses the new SAD to improve both MV (Motion Vector) accuracy and bit saving. Secondly, The proposed 2D direct mode that can be used in inter-view prediction is an extended version of the temporal direct mode in MPEG-4 AVC. The proposed MVC method obtains approximately 0.8dB PSNR (Peak Signal-to-Noise Ratio) increment compared with the MPEG-4 AVC simulcast coding.
The Journal of Korean Institute of Communications and Information Sciences
/
v.29
no.1C
/
pp.72-82
/
2004
This paper proposes more robust error concealment techniques (ECTs) for MPEG-2 intra coded frame. MPEG-2 source coding algorithm is very sensitive to transmission errors due to the use of variable-length coding. The transmission errors are corrected by error correction scheme, however, they cannot be revised properly. Error concealment (EC) is used to conceal the errors which are not corrected by error correction and to provide minimum visual distortion at the decoder. If errors are generated in intra coded frame, that is the starting frame of GOP, they are propagated to other inter coded frames due to the nature of motion compensated prediction coding. Such propagation of error may cause severe visual distortion. The proposed algorithm in this paper utilizes the spatio-temporal information of neighboring inter coded frames to conceal the successive slices errors occurred in I-frame. The proposed method also overcomes the problems that previous ECTs reside. The proposed algorithm generates consistent performance even in network where the violent transmission errors frequently occur. Algorithm is performed in MPEG-2 video codec and we can confirm that the proposed algorithm provides less visible distortion and higher PSNR than other approaches through simulations.
Journal of Korea Spatial Information System Society
/
v.11
no.4
/
pp.74-84
/
2009
GIS based new postal marketing method is presented in this paper with spatiotemporal mining to cope with domestic mail volume decline and to strengthening competitiveness of postal business. Market segmentation technique for socialogy of population and spatiotemporal prediction of consumer propensity to purchase through spatiotemporal multi-dimensional analysis are suggested to provide meaningful and accurate marketing information with customers. Internal postal acceptance & external statistical data of local districts in the Seoul Metropolis are used for the evaluation of geo-lifestyle clustering and spatiotemporal cube mining. Successfully optimal 14 maketing clusters and spatiotemporal patterns are extracted for the prediction of consumer propensity to purchase.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.4
/
pp.1162-1181
/
2023
Tourism flow is not only the manifestation of tourists' special displacement change, but also an important driving mode of regional connection. It has been considered as one of significantly topics in many applications. The existing research on tourism flow prediction based on tourist number or statistical model is not in-depth enough or ignores the nonlinearity and complexity of tourism flow. In this paper, taking Nanjing as an example, we propose a prediction method of urban tourism flow based on deep learning methods using travel diaries of domestic tourists. Our proposed method can extract the spatio-temporal dependence relationship of tourism flow and further forecast the tourism flow to attractions for every day of the year or for every time period of the day. Experimental results show that our proposed method is slightly better than other benchmark models in terms of prediction accuracy, especially in predicting seasonal trends. The proposed method has practical significance in preventing tourists unnecessary crowding and saving a lot of queuing time.
Journal of Korea Spatial Information System Society
/
v.8
no.1
s.16
/
pp.59-75
/
2006
One of the most challenging and encouraging applications of state-of-the-art technology is the field of traffic control systems. It combines techniques from the areas of telecommunications and computer science to establish traffic information and various assistance services. The support of the system requires a moving objects database system (MODB) that stores moving objects efficiently and performs spatial or temporal queries with time conditions. In this paper, we propose schemes to distribute an index nodes of trajectory based on spatio-temporal proximity and the characteristics of moving objects. The scheme predicts the extendible MBB of nodes of index through the prediction of moving object, and creates a parallel trajectory index. The experimental evaluation shows that the proposed schemes give us the performance improvement by 15%. This result makes an improvement of performance by 50% per one disk.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.406-409
/
2011
최근 방송과 통신의 융합으로 방송 통신 융합형 서비스가 활발해지고 있고, 사용자의 요구사항이 높아지고 있는 가운데 무선 채널을 이용한 인터랙티브 비디오 스트리밍 서비스는 가장 큰 서비스로 자리 잡고 있다. 인터랙티브 비디오 서비스중 하나인 파노라마 비디오는 기존의 고정적인 시청환경을 사용자가 능동적으로 선택할 수 있다는 측면에서 발전의 가능성이 큰 분야 중 하나이다. 하지만 넓은 시점을 가진 파노라마 비디오는 높은 대역폭이 요구된다는 단점이 있다. 이에 본 논문은 사용자가 파노라마 비디오 서비스를 받을 때 시청 시점을 변경시키면서 사용되는 비트율을 시공간적 필터를 사용하여 줄일 수 있는 방법을 제안한다. 이를 이용하여 고 대역폭 사용이 불가피한 파노라마 비디오 스트리밍 서비스의 요구 대역폭을 줄임으로서 인터렉티브 비디오의 스트리밍 서비스분야에서 효율적인 대역폭 사용을 위한 기술로 사용될 수 있음을 확인 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.