• Title/Summary/Keyword: Spatio-temporal prediction

Search Result 87, Processing Time 0.022 seconds

Construction of a Spatio-Temporal Dataset for Deep Learning-Based Precipitation Nowcasting

  • Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.135-142
    • /
    • 2022
  • Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.

On the Hybrid Prediction Pyramid Compatible Coding Technique (혼성 예측 피라미드 호환 부호화 기법)

  • 이준서;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.33-46
    • /
    • 1996
  • Inthis paper, we investigate the compatible coding technique, which receives much interest ever since the introduction of HDTV. First, attempts have been made to analyze the theoretical transform coding gains for various hierarchical decomposition techniques, namely subband, pyramid and DCT-based decomposition techniques. It is shown that the spatical domain techniques proide higher transform coding gains than the DCT-based coding technique. Secondly, we compare the performance of these spatial domain techniques, in terms of the PSNR versus various rate allocations to each layer. Based on these analyses, it is believed that the pyramid decomposition is more appropriate for the compatible coding. Also in this paper, we propose a hybrid prediction pyramid coding technique, by combining the spatio-temporal prediction in MPEG-2[3] and the adaptive MC(Motion Compensation)[1]. In the proposed coding technigue, we also employ an adaptive DCT coefficient scanning technique to exploit the direction information of the 2nd-layer signal. Through computer simulations, the proposed hybrid prediction with adaptive scanning technuque shows the PSNR improvement, by about 0.46-1.78dB at low 1st-layer rate(about 0.1bpp) over the adaptive MC[1], and by about 0.33-0.63dB at high 1st-layer rate (about 0.32-0.43bpp) over the spatio-temporal prediction[3].

  • PDF

Extended Adaptive Spatio-Temporal Auto-Regressive Model for Video Sequence (동영상에서의 확장된 시공간 적응적 Auto-regressive 모델의 연구)

  • Doo, Seok-Joo;Kang, Moon-Gi
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.54-59
    • /
    • 1999
  • In this paper, a generalized auto-regressive(AR) model is proposed for linear prediction based on adaptive spatio-temporal support region(ASTSR). The conventional AR model suffers from the drawback that the prediction error increases in the edge region because the rectangular support region of the edge does not satisfy the stationary assumption. Thus, the proposed approach puts an emphasis on the formulation of a spatio-temporally adaptive support region for the AR model, called ASTSR. The ASTSR consists of two parts: the adaptive spatial support region(ASSR) connected with edges and the adaptive temporal support region(ATSR) related to temporal discontinuities. The AR model based on ASTSR not only produces more accurate model parameters but also reduces the computational complexity in the motion picture restoration.

  • PDF

Spatio-temporal models for generating a map of high resolution NO2 level

  • Yoon, Sanghoo;Kim, Mingyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.803-814
    • /
    • 2016
  • Recent times have seen an exponential increase in the amount of spatial data, which is in many cases associated with temporal data. Recent advances in computer technology and computation of hierarchical Bayesian models have enabled to analyze complex spatio-temporal data. Our work aims at modeling data of daily average nitrogen dioxide (NO2) levels obtained from 25 air monitoring sites in Seoul between 2003 and 2010. We considered an independent Gaussian process model and an auto-regressive model and carried out estimation within a hierarchical Bayesian framework with Markov chain Monte Carlo techniques. A Gaussian predictive process approximation has shown the better prediction performance rather than a Hierarchical auto-regressive model for the illustrative NO2 concentration levels at any unmonitored location.

Using multiple sequence alignment to extract daily activity routines of the elderly living alone

  • Lee, Bogyeong;Lee, Hyun-Soo;Park, Moonseo;Ahn, Changbum Ryan;Choi, Nakjung;Kim, Toseung
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.73-90
    • /
    • 2019
  • The growth in the number of single-member households is a critical issue worldwide, especially among the elderly. For those living alone, who may be unaware of their health status or routines that could improve their health, a continuous healthcare monitoring system could provide valuable feedback. Assessing the performance adequacy of activities of daily living (ADL) can serve as a measure of an individual's health status; previous research has focused on determining a person's daily activities and extracting the most frequently performed behavioral patterns using camera recordings or wearable sensing techniques. However, existing methods used to extract common patterns of an occupant's activities in the home fail to address the spatio-temporal dimensions of human activities simultaneously. Though multiple sequence alignment (MSA) offers some advantages - such as inherent containment of the spatio-temporal data in sequence format, and rapid identification of hidden patterns - MSA has rarely been used to extract in-home ADL routines. This research proposes a method to extract a household occupant's ADL routines from a cumulative spatio-temporal data log of occupancy collected using a non-intrusive method (i.e., a tomographic motion detection system). The findings from an occupant's 28-day spatio-temporal activity log demonstrate the capacity of the proposed approach to identify routine patterns of an occupant's daily activities and to reveal the order, duration, and frequency of routine activities. Routine ADL patterns identified from the proposed approach are expected to provide a basis for detecting/evaluating abrupt or gradual changes of an occupant's ADL patterns that result from a physical or mental disorder, and can offer valuable information for home automation applications by enabling the prediction of ADL patterns.

Predictive motion estimation algorithm using spatio-temporal correlation of motion vector (움직임 벡터의 시공간적인 상관성을 이용한 예측 움직임 추정 기법)

  • 김영춘;정원식;김중곤;이건일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.64-72
    • /
    • 1996
  • In this paper, we propose predictive motion estimatin algorithm which can predict motion without additional side information considering spatio-tempral correlatio of motion vector. This method performs motion prediction of current block using correlation of the motion vector for two spatially adjacent blocks and a temporally adjacent block. Form predicted motion, the position of searhc area is determined. Then in this searhc area, we estimate motion vector of current block using block matching algoirthm. Considering spatial an temporal correlation of motion vector, the proposed method can predict motion precisely much more. Especially when the motion of objects is rapid, this method can estimate motion more precisely without reducing block size or increasing search area. Futhrmore, the proposed method has computation time the same as conventional block matching algorithm. And as it predicts motion from adjacent blocks, it does not require additional side information for adjacent block. Computer simulation results show that motion estimation of proposed method is more precise than that of conventioanl method.

  • PDF

Fast Motion Estimation Based on Motion Speed and Multiple Initial Center Point Prediction (모션 속도와 다양한 초기의 중앙점 예측에 기반한 빠른 비디오 모션 추정)

  • Peng, Shao-Hu;Saipullah, Khairul Muzzammil;Yun, Byung-Choon;Kim, Deok-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06a
    • /
    • pp.246-247
    • /
    • 2010
  • This paper proposes a fast motion estimation algorithm based on motion speed and multiple initial center points. The proposed method predicts initial search points by means of the spatio-temporal neighboring motion vectors. A dynamic search pattern based on motion speed and the predicted initial center points is proposed to quickly obtain the motion vector. Due to the usage of the spatio-temporal information and the dynamic search pattern, the proposed method greatly accelerates the search speed while maintaining a good predicted image quality. Experimental results show that the proposed method has a good predicted image quality in terms of PSNR with less search time as compared to the Full Search, New Three-Step Search, and Four-Step Search.

  • PDF

Adaptive motion estimation based on spatio-temporal correlations (시공간 상관성을 이용한 적응적 움직임 추정)

  • 김동욱;김진태;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1109-1122
    • /
    • 1996
  • Generally, moving images contain the various components in motions, which reange from a static object and background to a fast moving object. To extract the accurate motion parameters, we must consider the various motions. That requires a wide search egion in motion estimation. The wide search, however, causes a high computational complexity. If we have a few knowledge about the motion direction and magnitude before motion estimation, we can determine the search location and search window size using the already-known information about the motion. In this paper, we present a local adaptive motion estimation approach that predicts a block motion based on spatio-temporal neighborhood blocks and adaptively defines the search location and search window size. This paper presents a technique for reducing computational complexity, while having high accuracy in motion estimation. The proposed algorithm is introduced the forward and backward projection techniques. The search windeo size for a block is adaptively determined by previous motion vectors and prediction errors. Simulations show significant improvements in the qualities of the motion compensated images and in the reduction of the computational complexity.

  • PDF

Spatio-Temporal Trends in Temperature, Acidification and Dissolved Oxygen in Lower Mekong Basin for 1985-2005

  • Ratanavong, Nilapha;Lim, Sam-Sung;Lee, Hyung-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.3-12
    • /
    • 2011
  • Understanding of water sediment trends is an important part of water quality monitoring. Water quality variables change over time and space, and cannot be modeled or explained clearly by either temporal or spatial analysis alone. This research analysed the trends of temperature, pH levels and dissolved oxygen levels based on the sediment records and spatial data obtained in Lower Mekong Basin (LMB) during 1985-2005. Our aim is to evaluate spatio-temporal trends and graphical analyses using an Inverse Distance Weighting (IDW) interpolation method. The main results from this research can be summarized as follows. The maximum temperature and pH have been stable during the study period and the maximum dissolved oxygen has been increasing gradually until 2002. The minimum pH and dissolved oxygen have been changing in an unsteady trend during the period. A spatial analysis shows that the water temperature in this region has been increasing over time. The pH trend shows that it is decreasing during 1993-2005. Dissolved oxygen concentration has been increasing from 1989 onwards and stays in that track.

A Markov Chain Model for Population Distribution Prediction Considering Spatio-Temporal Characteristics by Migration Factors (이동요인별 시·공간적 인구이동 특성을 고려한 인구분포 예측: 마르코프 연쇄 모형을 활용하여)

  • Park, So Hyun;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.351-365
    • /
    • 2019
  • This study aims to predict the changes in population distribution in Korea by considering spatio-temporal characteristics of major migration reasons. For the purpose, we analyze the spatio-temporal characteristics of each major migration reason(such as job, family, housing, and education) and estimate the transition probability, respectively. By appling Markov chain model processes with the ChapmanKolmogorov equation based on the transition probability, we predict the changes in the population distribution for the next six years. As the results, we found that there were differences of population changes by regions, while there were geographic movements into metropolitan areas and cities in general. The methodologies and the results presented in this study can be utilized for the provision of customized planning policies. In the long run, it can be used as a basis for planning and enforcing regionally tailored policies that strengthen inflow factors and improve outflow factors based on the trends of population inflow and outflow by region by movement factors as well as identify the patterns of population inflow and outflow in each region and predict future population volatility.