• 제목/요약/키워드: Spatio-Temporal Model Algorithm

검색결과 37건 처리시간 0.027초

소양강댐 유역에 대한 지표수문모형의 구축 (Development of Land Surface Model for Soyang river basin)

  • 이재현;조희대;최민하;김동균
    • 한국수자원학회논문집
    • /
    • 제50권12호
    • /
    • pp.837-847
    • /
    • 2017
  • 본 연구에서는 소양강댐 유역의 수문기상인자들의 시공간적 변동성을 명확히 파악하기 위하여 지표해석모형을 구축하였다. 지표해석 모형으로는 Variable Infiltration Capacity (VIC) 모형을 사용하였으며, 모형의 공간 해상도는 10 km, 시간 해상도는 1일로 정하였다. 2007~2010년 기간의 일유량자료를 바탕으로 Isolated Particle Swarm Optimization 알고리즘을 사용하여 모형의 7개 매개변수를 보정하였고, 2011~2014년 기간의 일유량자료를 사용하여 모형을 검증하였다. 보정된 모형은 보정기간과 검증기간 모두에 대하여 0.90의 Nash-Sutcliffe Coefficient값과 0.95의 상관계수를 보였다. 소양강댐유역에 대하여 산출된 인자들은 여름철에 강우가 집중되어있는 우리나라의 계절적인 특성과 기온변화로 인한 장 단파 복사량의 변화와, 지표면 온도의 변화, 이로 인해 피복층에서의 증발과 식생 증산의 변화가 고려되어 총 증발산이 변화하는 경향이 잘 반영된 것으로 나타났다. 산출된 수문인자를 검증하기 위하여 지상관측토양수분자료와 비교하였다. 겨울철을 제외한 4~11월의 비교결과 두 자료의 추세선의 기울기는 1.087로 나타났고, 상관계수는 0.723의 값을 나타냈다. 이러한 본 연구의 결과는 지표해석모형이 우리나라 주요 댐 유역의 수문기상인자의 시공간적인 변화를 정확히 파악하는데 활용될 수 있으며, 나아가서는 더욱 정밀하고 효율적인 수자원계획을 수립하는 데에도 활용될 수 있다는 점을 시사한다.

능동소나 표적 인식을 위한 신호합성 및 특징추출 (Signal Synthesis and Feature Extraction for Active Sonar Target Classification)

  • 어윤;석종원
    • 한국멀티미디어학회논문지
    • /
    • 제18권1호
    • /
    • pp.9-16
    • /
    • 2015
  • Various approaches to process active sonar signals are under study, but there are many problems to be considered. The sonar signals are distorted by the underwater environment, and the spatio-temporal and spectral characteristics of active sonar signals change in accordance with the aspect of the target even though they come from the same one. And it has difficulties in collecting actual underwater data. In this paper, we synthesized active target echoes based on ray tracing algorithm using target model having 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to synthesized target echoes to extract feature vector. Recognition experiment was performed using probabilistic neural network classifier.

수리자극에 의한 지열저류층에서의 유도지진과 단층대의 변형에 관한 입자기반 개별요소법 모델링 연구 (Particle Based Discrete Element Modeling of Hydraulic Stimulation of Geothermal Reservoirs, Induced Seismicity and Fault Zone Deformation)

  • 윤정석;아미르 하킴하쉐미;아노 짱;귄터 찜머만
    • 터널과지하공간
    • /
    • 제23권6호
    • /
    • pp.493-505
    • /
    • 2013
  • 본 수치해석논문에서는 절리와 단층대를 포함한 지열저류층에 수리자극을 가할 시 수반되는 유도지진과 단층대의 변형을 개별요소법을 사용하여 모델링하였다. 수채해석기법은 2차원 입자유동코드를 기반으로 하며 수리역학적 상호작용기법과 미소파괴음의 모멘트텐서 역산알고리즘이 결합되었다. 수치해석의 주요결과로는 시공간적으로 변하는 유도지진의 분포와 규모 그리고 단층대의 변형(파괴 및 전단변위)과 주입유체압력의 시공간적 분포와의 상관관계이다. 첫 번째 수치해석으로부터 절리가 분포하는 지열저류층에서의 수리자극에 의한 유도지진의 분포는 주입유체의 점성에 상당한 영향을 받는 것으로 나타났다. 주입유체의 점성이 낮은 경우 (1 cP), 유도지진의 발생범위가 큰 것으로 나타났으며, 주입 후 발생하는 유도지진의 개수와 규모 또한 높게 나타났다. 단층대가 존재하는 지열저류층의 수리자극 모델링의 결과, 주입정의 위치가 단층대와 가까운 경우 작은 주입수 압력분포(<0.1 MPa)로도 단층대의 파괴와 전단변형을 일으킬 수 있는 것으로 나타났다. 본 논문에서 소개한 수치해석기법은 수리자극을 통한 지열저류층 개발 시 유도지진의 분포와 규모를 실제 유체주입작업전에 예측할 수 있게 함으로써 지열에너지개발 분야에서 유용하게 사용될 수 있을 것으로 기대한다.

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.

Fractional Fourier 변환을 이용한 능동소나 표적 인식 (Active Sonar Target Recognition Using Fractional Fourier Transform)

  • 석종원;김태환;배건성
    • 한국정보통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.2505-2511
    • /
    • 2013
  • 수중환경 하에서 표적을 탐지하고 식별하는 문제는 군사적인 목적은 물론 비군사적 목적으로도 많은 연구가 수행되어 왔다. 수중환경에서의 수중음향 신호가 시간 공간적으로 특성이 변화하며 천해 다중경로 환경을 반영하는 복잡한 특성을 보이는 점으로 인해 능동 표적인식 기술은 매우 어려운 기술로 여겨져 왔다. 또한 실제 데이터 수집의 어려움이 따르게 된다. 본 논문에서는 3차원 하이라이트 분포를 가지는 모델을 이용하여, 능동소나 표적신호를 음선 추적기법을 기반으로 하여 합성하였다. 합성된 표적신호를 대상으로 Fractional Fourier 변환을 적용하여 특징벡터를 추출하였고, 신경회로망 인식기를 이용하여 인식 실험을 수행하였다.

비디오 시퀀스에서 움직임 정보를 이용한 침입탐지 알고리즘 (Intrusion Detection Algorithm based on Motion Information in Video Sequence)

  • 알라 킴;김윤호
    • 한국항행학회논문지
    • /
    • 제14권2호
    • /
    • pp.284-288
    • /
    • 2010
  • 비디오 감시 장치는 사회안전망 구축분야에서 다양하게 응용되고 있다. 본 논문은 고정 카메라에서 취득된 시각정보를 이용한 침입 탐지 알고리즘을 제안하였다. 제안한 알고리즘은 비디오 시퀀스에서 AMF를 이용하여 모델링된 배경으로부터 물체 프레임 후보를 찾아내고, 감지된 물체는 움직임 정보의 분석으로 계산된다. 움직임 검출은 RGB 공간에서 2D 물체의 상대적 크기로 결정하였으며 물체 감지를 위한 임계값은 실험적인 방법으로 결정하였다. 실험 결과, 시 공간적 후보 정보들이 급격히 변화할 때, 물체 감지의 성능이 우수함을 확인할 수 있었다.

수화 패턴 인식을 위한 2단계 신경망 모델 (Two-Stage Neural Networks for Sign Language Pattern Recognition)

  • 김호준
    • 한국지능시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.319-327
    • /
    • 2012
  • 본 논문에서는 착용식 추적장치나 표식 등의 보조 도구를 사용하지 않는 환경의 동영상 데이터로부터 수화 패턴을 인식하는 방법론에 관하여 고찰한다. 시스템 설계 및 구현에 관한 주제로서 특징점의 추출기법, 특징데이터의 표현기법 및 패턴 분류기법에 관한 방법론을 제시하고 그 유용성을 고찰한다. 일련의 동영상으로 표현되는 수화패턴에 대하여 특징점의 공간적 위치에 대한 변이 뿐만 아니라 시간차원의 변화를 고려한 특징데이터의 표현방법을 제시하며, 방대한 데이터에 의한 분류기의 크기 문제와 계산량의 문제를 개선하기 위하여 효과적으로 특징수를 줄일 수 있는 특징추출 방법을 소개한다. 패턴 분류과정에서 점진적 학습(incremental learning)이 가능한 신경망 모델을 제시하고 그 동작특성 및 학습효과를 분석한다. 또한 학습된 분류모델로부터 특징과 패턴 클래스 간의 상대적 연관성 척도를 정의하고, 이로부터 효과적인 특징을 선별하여 성능저하 없이 분류기의 규모를 최적화 할 수 있음을 보인다. 제안된 내용에 대하여 여섯 가지 수화패턴을 대상으로 적용한 실험을 통하여 유용성을 평가한다.

비-파라미터 기반의 움직임 분류를 통한 비디오 검색 기법 (Video retrieval method using non-parametric based motion classification)

  • 김낙우;최종수
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.1-11
    • /
    • 2006
  • 본 논문에서는 샷(shot) 기반 비디오 색인 구조에서 비-파라미터(non-parametric) 기반의 움직임 분류를 통한 비디오 영상 검색 기법을 제안한다. 본 논문에서 제안하는 비디오 검색 시스템은 장면 전환 기법을 통해 얻은 샷 단위의 짧은 비디오로부터 대표 프레임과 움직임 정보를 취득한 후, 이를 통해 시각적 특징과 움직임 특징을 추출하여 유사도를 비교함으로써 시-공간적 특징을 이용한 실시간 검색이 가능하도록 구현되었다. 비-파라미터 기반의 움직임 특징의 추출은 MPEG 압축 스트림으로부터 정규화된 움직임 벡터계(界)를 추출한 후, 각각의 정규화된 움직임 벡터를 여러 개의 각도 빈(bin)으로 양자화하고 이의 평균과 분산, 방향 등을 고려함으로써 효과적으로 이루어진다. 대표 프레임에서의 시각 특징 검출을 위해서는 에지 기반의 공간 기술자를 이용하였다. 실험 결과는 영상 색인 및 검색에 있어서 제안된 시스템이 매우 효과적임을 잘 나타내고 있다. 데이터베이스 내 영상의 색인을 위해서는 R*-tree 구조를 이용한다.

행동인식을 위한 다중 영역 기반 방사형 GCN 알고리즘 (Multi-Region based Radial GCN algorithm for Human action Recognition)

  • 장한별;이칠우
    • 스마트미디어저널
    • /
    • 제11권1호
    • /
    • pp.46-57
    • /
    • 2022
  • 본 논문에서는 딥러닝을 기반으로 입력영상의 옵티컬 플로우(optical flow)와 그래디언트(gradient)를 이용하여 종단간 행동인식이 가능한 다중영역 기반 방사성 GCN(MRGCN: Multi-region based Radial Graph Convolutional Network) 알고리즘에 대해 기술한다. 이 방법은 데이터 취득이 어렵고 계산이 복잡한 스켈레톤 정보를 사용하지 않기 때문에 카메라만을 주로 사용하는 일반 CCTV 환경에도 활용이 가능하다. MRGCN의 특징은 입력영상의 옵티컬플로우와 그래디언트를 방향성 히스토그램으로 표현한 후 계산량 축소를 위해 6개의 특징 벡터로 변환하여 사용한다는 것과 시공간 영역에서 인체의 움직임과 형상변화를 계층적으로 전파시키기 위해 새롭게 고안한 방사형 구조의 네트워크 모델을 사용한다는 것이다. 또 데이터 입력 영역을 서로 겹치도록 배치하여 각 노드 간에 공간적으로 단절이 없는 정보를 입력으로 사용한 것도 중요한 특징이다. 30가지의 행동에 대해 성능평가 실험을 수행한 결과 스켈레톤 데이터를 입력으로 사용한 기존의 GCN기반 행동인식과 동등한 84.78%의 Top-1 정확도를 얻을 수 있었다. 이 결과로부터 취득이 어려운 스켈레톤 정보를 사용하지 않는 MRGCN이 복잡한 행동인식이 필요한 실제 상황에서 더욱 실용적인 방법임을 알 수 있었다.

Spatio-Temporal Projection of Invasion Using Machine Learning Algorithm-MaxEnt

  • Singye Lhamo;Ugyen Thinley;Ugyen Dorji
    • Journal of Forest and Environmental Science
    • /
    • 제39권2호
    • /
    • pp.105-117
    • /
    • 2023
  • Climate change and invasive alien plant species (IAPs) are having a significant impact on mountain ecosystems. The combination of climate change and socio-economic development is exacerbating the invasion of IAPs, which are a major threat to biodiversity loss and ecosystem functioning. Species distribution modelling has become an important tool in predicting the invasion or suitability probability under climate change based on occurrence data and environmental variables. MaxEnt modelling was applied to predict the current suitable distribution of most noxious weed A. adenophora (Spreng) R. King and H. Robinson and analysed the changes in distribution with the use of current (year 2000) environmental variables and future (year 2050) climatic scenarios consisting of 3 representative concentration pathways (RCP 2.6, RCP 4.5 and RCP 8.5) in Bhutan. Species occurrence data was collected from the region of interest along the road side using GPS handset. The model performance of both current and future climatic scenario was moderate in performance with mean temperature of wettest quarter being the most important variable that contributed in model fit. The study shows that current climatic condition favours the A. adenophora for its invasion and RCP 2.6 climatic scenario would promote aggression of invasion as compared to RCP 4.5 and RCP 8.5 climatic scenarios. This can lead to characterization of the species as preferring moderate change in climatic conditions to be invasive, while extreme conditions can inhibit its invasiveness. This study can serve as reference point for the conservation and management strategies in control of this species and further research.