최근 클라우드 환경의 서비스 지연문제 해결을 위하여 응용서비스의 사용자 근접성 확보 및 계산 오프로딩을 위한 FEC (Fog/Edge Computing) 패러다임에 대한 연구가 활발하다. 엣지 디바이스 (이동객체)들의 동적 위치변화 패턴 예측방법은 FEC 환경에서 컴퓨팅 리소스의 효율적 분배 및 배치를 위하여 중요한 역할을 한다. 본 논문은 엣지 디바이스들의 이동 빈발패턴에 대한 지지도의 임계값을 적용하여 선택된 경로들을 대상으로 임의의 가중치 (거리, 시간, 혼잡도)를 추가적으로 적용한 최적 이동패턴 추출방법을 제안한다. 실험을 통하여 제안 알고리즘은 빈발도만을 적용한 OPE_freq [8] 알고리즘과 A* 및 Dijkstra 알고리즘 등과 비교한 결과, 수행시간과 노드 접근횟수를 감소시키고 보다 정확한 경로를 추출함을 알 수 있다.
본 논문에서는 딥러닝을 기반으로 입력영상의 옵티컬 플로우(optical flow)와 그래디언트(gradient)를 이용하여 종단간 행동인식이 가능한 다중영역 기반 방사성 GCN(MRGCN: Multi-region based Radial Graph Convolutional Network) 알고리즘에 대해 기술한다. 이 방법은 데이터 취득이 어렵고 계산이 복잡한 스켈레톤 정보를 사용하지 않기 때문에 카메라만을 주로 사용하는 일반 CCTV 환경에도 활용이 가능하다. MRGCN의 특징은 입력영상의 옵티컬플로우와 그래디언트를 방향성 히스토그램으로 표현한 후 계산량 축소를 위해 6개의 특징 벡터로 변환하여 사용한다는 것과 시공간 영역에서 인체의 움직임과 형상변화를 계층적으로 전파시키기 위해 새롭게 고안한 방사형 구조의 네트워크 모델을 사용한다는 것이다. 또 데이터 입력 영역을 서로 겹치도록 배치하여 각 노드 간에 공간적으로 단절이 없는 정보를 입력으로 사용한 것도 중요한 특징이다. 30가지의 행동에 대해 성능평가 실험을 수행한 결과 스켈레톤 데이터를 입력으로 사용한 기존의 GCN기반 행동인식과 동등한 84.78%의 Top-1 정확도를 얻을 수 있었다. 이 결과로부터 취득이 어려운 스켈레톤 정보를 사용하지 않는 MRGCN이 복잡한 행동인식이 필요한 실제 상황에서 더욱 실용적인 방법임을 알 수 있었다.
ITU-T와 MPEG에 의해 최근 표준화가 완성된 H.264는 가변 블록 크기 움직임 예측, 다중 참조 영상, 1/4화소단위 움직임 예측 및 보상, $4{\times}4$ 정수 단위 DCT, 비트율-왜곡 최적화(Rate-Distortion Optimization)등의 새로운 부호화 기술로 H.263, MPEG-4 등 기존 비디오 표준에 비해 더 좋은 부호화 효율을 제공하고 있다. 그러나 새로운 부호화 기술들은 H.264의 전반적인 복잡도를 심화시키는 주된 요인이므로, H.264의 실제 응용을 용이하게 하기 위해서는 이러한 기술에 대한 고속 알고리즘이 요구된다. 제안하는 방식은 부호화기의 복잡도에서 가장 큰 비중을 차지하는 가변 블록 크기 움직임 예측 부호화에서 부호화 모드를 효율적으로 생략함으로써 모드 결정을 빠르게 수행하는 고속 모드 결정법으로, 참조 영상의 수를 줄이는 방법과 예측 모드를 생략하는 방법으로 구분될 수 있다. 참조 영상의 수를 줄이는 방법의 경우 상위 $16{\times}16$ 매크로블록에서 최소의 SAD를 갖는 참조 영상을 선택하여 $16{\times}8$과 $8{\times}16$ 모드의 움직임을 예측하고, 이 중 다시 최적의 참조 영상을 선택하여 하위 모드의 움직임을 예측한다. 예측 모드를 생략하는 방법에서는 매크로블록의 가로와 세로 세분화 방향성을 이용하여 만약 $16{\times}16$ 모드가 선택될 경우, $8{\times}8$과 $4{\times}4$ 하위 모드만 수행하고, $16{\times}8$ 모드가 선택되면 $8{\times}4$, $8{\times}16$ 모드가 선택되면 $4{\times}8$ 모드에서만 움직임 예측을 수행할 수 있다. 실험 결과 모든 참조 영상을 사용하는 방식에 비해 평균 65%가량 속도가 향상된 반면 영상의 화질은 H.264 표준 및 기존 방식과 유사함을 PSNR을 통하여 증명한다.
2000년 이후 빈번하게 발생하고 있는 봄 가뭄을 모니터링하기 위한 방법의 하나로 위성영상을 이용하여 제작한 식생지수의 변화를 통해 가뭄을 간접적으로 추정하는 연구가 수행되고 있다. 식생지수 기반의 가뭄 모니터링은 가뭄의 변화를 시 공간적으로 효과적으로 파악할 수 있다는 장점을 갖고 있으며 MODIS 영상과 같이 주기 해상도가 뛰어난 저해상도 위성영상의 활용 기반이 조성됨에 따라 가뭄모니터링을 위한 식생지수의 활용성은 더욱 증가할 것으로 예상된다. 식생지수를 이용한 가뭄평가는 식생 활력에 영향을 주는 요소를 기상학적 요인으로 제한하고 있으나 실제 식생 스트레스를 초래하는 직 간접적인 원인은 매우 다양하며 이로 인해 식생지수를 이용한 가뭄평가는 다수의 불확실성이 내포되어 있다고 할 수 있다. 따라서 식생지수를 이용한 가뭄분석의 객관성을 확보하고 이를 활용한 가뭄모니터링 체계를 구축하기 위해서는 가뭄관리를 위해 활용되고 있는 대표적인 가뭄분석 도구와의 비교가 선행되어야 할 것이다. 본 연구에서는 대표적인 식생지수인 NDVI를 기상학적 가뭄지수인 PDSI, SPI와 비교하고 이들의 상관성을 제시함으로써 가뭄평가를 위한 식생지수의 활용성을 제시하고자 하였다. 연구결과 다중시기를 대상으로 NDVI와 지속기간 6개월의 SPI변화패턴은 유사하게 나타났으며 NDVI는 식생피복을 갖는 내륙지역에서 가뭄지수와 가장 높은 상관성을 갖는 것으로 나타났다.
본 연구에서는 서울지역에서 기온($^{\circ}C$) 및 강수(mm)의 시 공간 구조 분석 및 변화경향과 변이성을 도출하였다. 1997년 1월부터 2006년 12월까지의 기상청에서 제공하는 31개 자동기상관측망의 기온 및 강수자료를 이용하였으며, 미 관측지점의 값을 추정하기 위하여 거리자승역산가중 (IDSW: Inverse Distance Squared Weighing)을 적용하여 보간 하였다. 기온과 강수량의 변이성을 평가하기 위하여 연평균 및 더운 날과 추운 날의 빈도를 알아보았다. 그 결과 최고 기온 값은 1999년의 $32.80^{\circ}C$, 최저기온은 2001년의 $-19.94^{\circ}C$로 나타났다. 더운 날의 빈도가 가장 많았던 해는 79일을 기록한 2006년이며, 2004년과 2005년에도 비슷한 기록을 보였다. 추운날의 빈도가 가장 많았던 해는 105일을 기록한 2001년이다. 또한 기온과 강수량 모두 지난 10년 동안 기온이 약 $1.03^{\circ}C$, 강수량이 약 483.09mm 증가한 것으로 나타났다. 과거 10년 동안 기온변이의 경우 고도가 높은 산림지역과 고도가 낮은 주거지역에서 차이가 크게 나타난 반면, 강수량의 경우 지형 및 토지이용에 따른 변이성의 차이가 미미한 것으로 나타났다.
본 연구에서는 대용량 궤적 데이터베이스에서 영역 질의를 효과적으로 처리하기 위한 인덱싱 기법에 대하여 논의한다. 먼저, 기존 인덱싱기법의 문제점을 지적하고, 이러한 문제점을 해결하는 새로운 기법을 제안한다. 제안된 기법에서는 우선 시간 차원을 다수의 시간 구간으로 분할하고, 인덱싱의 대상이 되는 전체 라인 세그먼트들을 시간 구간별로 구분한다. 각 시간 구간에 속하는 라인 세그먼트들에 대하여 별도의 인덱스를 구축한다. 또한, 디스크에서 관리되는 과거 시간 구간에 대한 인덱스들과는 달리 최근 시간 구간에 대한 인덱스는 메인 메모리상에 관리함으로써 삽입과 검색의 성능을 크게 개선할 수 있다. 각 시간 구간에 속하는 라인 세그먼트들은 다음과 같은 방식으로 인덱스를 구축한다. 먼저, 2D-트리를 이용하여 전체 공간 차원을 유사한 수의 라인 세그먼트들이 배정되도록 다수의 셀들로 분할한다. 또한, 분할된 각 셀마다 시공간 차원 (x, y, t)에 대한 별도의 3차원 $R^*$-트리를 두어 보다 상세한 인덱싱을 지원한다. 이와 같은 다양한 전략을 이용함으로써 기존 기법의 문제점들을 해결 할 수 있다. 다양한 실험을 통하여 제안된 기법의 우수성을 정량적으로 검증한다. 실험 결과에 의하면, 기존 기법에 비하여 작은 인덱스 구조를 갖으면서도 검색 성능면에서 3$\sim$10배까지의 성능 향상 효과를 갖는 것으로 나타났다.
이상 객체란 일반적이고 평범한 행동을 취하는 객체가 아닌 비정상적이고 흔하지 않은 행동을 하여 관찰이나 감시·감독을 필요로 하는 사람, 물체, 기계 장치 등을 뜻한다. 이를 사람의 지속적인 개입 없이 인공지능 알고리즘을 통해 탐지하기 위해서 광학 흐름 기법을 활용한 시간적 특징의 특이도를 관찰하는 방법이 많이 활용되고 있으며, 이 기법은 정해진 표현 범위가 없는 수많은 이상 행동을 식별하기에 적합하다. 본 연구에서는 생성적 적대 신경망(Generative Adversarial Network, GAN)으로 입력 영상 프레임을 광학 흐름 영상으로 변환하는 알고리즘을 학습시켜 비정상적인 상황을 식별한다. 특히 생성적 적대 신경망 모델이 입력 영상에 대한 중요한 특징 정보를 학습하고, 그 외 불필요한 이상치를 제외시키기 위한 전처리 과정과 학습 후 테스트 데이터셋에서 식별 정확도를 높이기 위한 후처리 과정을 고도화하여 전체적인 모델의 이상 행동 식별 성능을 향상시키는 기법을 제안한다. 이상 행동을 탐지하기 위한 학습 데이터셋으로 UCSD Pedestrian, UMN Unusual Crowd Activity를 활용하였으며, UCSD Ped2 데이터셋에서 프레임 레벨 AUC 0.9450, EER 0.1317의 수치를 보이며 이전 연구에서 도출된 성능 지표 대비 성능 향상이 확인되었다.
최근 개발된 영상 압축 표준인 MPEG-4 Part 2는 임의의 영상 객체를 처리할 수 있는 최신의 기능을 포함한다. 이러한 기능을 지원하기 위해서는 효과적인 객체 추출 기술이 요구된다. 본 논문에서는 영상 내에서 실시간으로 객체를 추출해 낼 수 있는 알고리즘을 제안한다. 제안된 알고리즘은 두 단계로 구성된다. 첫 번째 단계는 한 프레임의 영상을 시공간적 watershed transform을 이용하여 여러 영역으로 분할하는 것이고, 두 번째 단계는 분할된 영역 정보를 바탕으로 객체를 추출해내는 것이다. 실시간 처리를 위해서 제안된 알고리즘은 하드웨어와 소프트웨어로 분할하여 구현하고, 계산량이 집중된 연산 부분을 하드웨어 가속기를 사용하여 처리한다. 실험 결과 제안된 시스템은 QCIF 크기의 영상을 초당 15 frame 이상의 속도로 처리하면서도, 정확한 객체 추출 결과를 보였다.
Demographic change was considered to be the most major driver of land use change although there were several interacting factors involved, especially in the developing countries. This paper presents an approach to predict the future land use change using a hybrid model. A hybrid model consisting of logistic regression model, Markov chain (MC), and cellular automata (CA) was designed to improve the performance of the standard logistic regression model. Experiment was conducted in Giao Thuy district, Nam Dinh Province, Vietnam. Demography and socio-economic variables dealing with urban sprawl were used to create a probability surface of spatio-temporal states of built-up land use for the years 2009, 2019, and 2029. The predicted land use maps for the years 2019 and 2029 show substantial urban development in the area, much of which are located in areas sensitive to source protections. It also showed that aquacultural land changes substantially in areas where are in the vicinity of estuary or near the sea dike. There was considerable variation between the communes; notably, communes with higher household density and higher proportion of people in working age have larger increases in aquacultural areas. The results of the analysis can provide valuable information for local planners and policy makers, assisting their efforts in constructing alternative sustainable urban development schemes and environmental management strategies.
최근 기후변화로 인하여 발생하는 기상재해 및 위험기상 현상의 대비를 위하여 조밀한 시공간적 해상도를 갖는 레이더 강우가 활용되고 있지만 널리 사용되는 Marshall-Palmer의 Z-R 관계식으로 추정된 레이더 강우는 과소추정의 문제점이 있다. 본 연구는 이러한 문제점을 해결하기 위하여 분위회귀 분석기법을 통한 레이더 강우자료 편의보정 기법과 Copula 함수를 연계한 강우자료 확충기법을 개발하였다. 본 연구에서 개발된 모형을 통하여 편의가 보정된 시계열 레이더 강우자료 효율을 통계적으로 분석한 결과 우수한 모형성능을 확인하였으며 Copula 기법을 이용하여 지상강우 및 레이더 강우자료를 확충한 결과 기존의 강우특성을 현실적으로 재현하는 것을 확인하였다. Copula 기법을 통한 강우자료 확충기법은 레이더 강우의 오차분포를 평가하는데 유용하게 활용될 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.