가상현실에서 실제 사람처럼 행동하는 가상거주자는 스스로 주변의 상황을 판단하고 평가를 내리게 된다. 이러한 상황에 대한 판단은 얼마나 정확하고 다양한 자료가 주어졌느냐에 따라서 달라지게 된다. 본 논문에서는 Spatio-temporal graph(ST graph)를 사용하여 시간과 공간에 대한 데이터를 정의하고, ontology의 개념을 더하여 다양한 상황에 대한 표현이 가능하게 하였다. 이 표현 방법으로 가상거주자는 어떠한 상황을 마주하더라도 주변 환경이나 공간에 대한 데이터를 가지고 분석하여 필요한 행동을 할 수 있게 될 것이다.
The traffic flow in an urban area is affected by the date, weather, and regional traffic flow. The existing methods are weak to model the dynamic road network features, which results in inadequate long-term prediction performance. To solve the problems regarding insufficient capacity for dynamic modeling of road network structures and insufficient mining of dynamic spatio-temporal features. In this study, we propose a novel traffic flow prediction framework called shared spatio-temporal attention convolution optimization network (SSTACON). The shared spatio-temporal attention convolution layer shares a spatio-temporal attention structure, that is designed to extract dynamic spatio-temporal features from historical traffic conditions. Subsequently, the graph optimization module is used to model the dynamic road network structure. The experimental evaluation conducted on two datasets shows that the proposed method outperforms state-of-the-art methods at all time intervals.
Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, a lot of efforts have been made in the field of data science to help combat against this disease. Among them, forecasting the number of cases of infection is a crucial problem to predict the development of the pandemic. Many deep learning-based models can be applied to solve this type of time series problem. In this research, we would like to take a step forward to incorporate spatial data (geography) with time series data to forecast the cases of region-level infection simultaneously. Specifically, we model a single spatio-temporal graph, in which nodes represent the geographic regions, spatial edges represent the distance between each pair of regions, and temporal edges indicate the node features through time. We evaluate this approach in COVID-19 in a Korean dataset, and we show a decrease of approximately 10% in both RMSE and MAE, and a significant boost to the training speed compared to the baseline models. Moreover, the training efficiency allows this approach to be extended for a large-scale spatio-temporal dataset.
International journal of advanced smart convergence
/
제12권4호
/
pp.88-97
/
2023
Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.
본 논문에서는 가상 상황속의 사건들에 역사적 맥락을 부여하기 위한 통합적 직관적 정보표현구조로서 시공간 그래프(Spatio-Temporal Graph)를 설계하고 구현하였다. 일반적으로 사건은 공간뿐 아니라 시간을 점유함으로써 역사적 사실이 된다. 따라서 가상 상황을 시뮬레이션하기 위해서는 공간적 측면을 표현하기 위한 삼차원 정보구조에 시간적 측면을 더한 다차원적인 맥락에 사건들을 위치시키는 일이 핵심적 기초가 된다. 이러한 다차원적 맥락은 온톨로지 뷰, 인스턴스 뷰, 시공간 뷰, 실제 뷰 등과 같은 여러 수준에서의 통합적 직관적 지식표현수단들을 통해 구현된다. 이와 같이 구현된 시공간 그래프에 기반한 시뮬레이션 시스템에 예제 시나리오를 적용하여 실용성을 검증한다. 본 기술은 지능형 교육시스템이나 차세대 시뮬레이션 게임 등에 필수적인 다양한 상황들을 제공하는 시뮬레이션 시스템의 중심요소가 된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권6호
/
pp.2217-2229
/
2015
Since the variations of illumination, the irregular changes of human shapes, and the partial occlusions, multiple person tracking is a challenging work in computer vision. In this paper, we propose a graph clustering method based on spatio-temporal information of moving objects for multiple person tracking. First, the part-based model is utilized to localize individual foreground regions in each frame. Then, we heuristically leverage the spatio-temporal constraints to generate a set of reliable tracklets. Finally, the graph shift method is applied to handle tracklet association problem and consequently generate the completed trajectory for individual object. The extensive comparison experiments demonstrate the superiority of the proposed method.
본 논문에서는 시공간 그래프를 이용하여 가상세계의 구성요소인 상황들에 역사적 맥락을 부여하고, 온톨로지를 사용하여 상황의 구성요소인 객체와 관계 및 사건에 관한 체계적 표현이 가능하게 하였다. 이를 위해 시간적 측면에서 과거, 현재 뿐 아니라 미래까지 포괄적으로 표현하고, 공간을 효율적이면서도 직관적으로 표현할 수 있는 방법을 개발하였다. 이 표현구조는 전체적으로 물리적 계층, 논리적 계층 그리고 개념적 계층들로 구성하되 계층들 간의 상호연관성을 종합적으로 표현하여 각 계층에 상응하는 세계들 속의 사건들을 역사적으로 의미있게 시뮬레이션할 수 있게 한다. 이러한 지식표현구조는 가상세계를 이루는 상황들을 시뮬레이션하는 바탕으로 사용하는 동시에, 가상세계 거주자들이 상황을 판단하고 평가를 내리는데 필요한 개별적인 지식을 구현하는데도 사용한다. 다층적 구조의 가상세계에다 시간적 변화를 추가로 수용할 수 있는 다차원의 복합지식구조를 개발함으로써 역사 속에서 상황의 다양성을 극대화 할 수 있는 가상세계 시뮬레이션의 기본 토대가 마련되게 된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3598-3614
/
2020
With the increase of motor vehicles and tourism demand, some traffic problems gradually appear, such as traffic congestion, safety accidents and insufficient allocation of traffic resources. Facing these challenges, a model of Spatio-Temporal Dilated Convolutional Network (STDGCN) is proposed for assistance of extracting highly nonlinear and complex characteristics to accurately predict the future traffic flow. In particular, we model the traffic as undirected graphs, on which graph convolutions are built to extract spatial feature informations. Furthermore, a dilated convolution is deployed into graph convolution for capturing multi-scale contextual messages. The proposed STDGCN integrates the dilated convolution into the graph convolution, which realizes the extraction of the spatial and temporal characteristics of traffic flow data, as well as features of road occupancy. To observe the performance of the proposed model, we compare with it with four rivals. We also employ four indicators for evaluation. The experimental results show STDGCN's effectiveness. The prediction accuracy is improved by 17% in comparison with the traditional prediction methods on various real-world traffic datasets.
본 논문에서는 고정되지 않은 배경의 동영상에서 객체를 추출하는 방법을 제안한다. 제안하는 알고리즘은 추적에 기반을 둔 기법으로 크게 세 단계의 과정으로 이루어져 있다. 첫 번째 단계는 초기 분할로서, 사용자의 반응을 이용하여 첫 프레임의 분할 결과를 획득하는 과정이다. 초기 분할을 통해 획득된 결과 샘플은 커널 밀도 추정을 이용하여 각 매크로 블록별 컬러 확률 밀도 함수를 생성하는데 사용된다. 두 번째 단계에서는 각 프레임에 대해 이전 프레임의 경계 정보와 움직임 벡터를 이용하여 일치성 띠를 생성하고, 생성된 띠에 대한 시공간 확률을 추정한다. 마지막 단계에서는 각 픽셀별 컬러, 시공간, 스무드항의 합으로 구성된 에너지 함수를 최소화하여 최종 결과를 획득한다. 실험 결과를 통해서 본 논문에서 제안하는 기법이 정확한 분할 결과를 추출하는 지 다양한 테스트 영상을 통해 확인한다.
본 논문에서는 이동 카메라 환경에서 이동 및 이동 중 정지물체를 검출하기 위한 방법을 제안한다. 이동 중에 일시적으로 정지한 물체는 검출 결과의 응용관점에서 볼 때 이동물체의 검출만큼이나 중요한데, 기존의 이동물체 검출 방법들은 이들을 배경과 구분하지 못하는 한계를 갖는다. 이러한 문제를 해결하기 위해 제안하는 방법에서는 이동 가능성 큐, 위치 가능성 큐, 그리고 색 분포 유사성 큐를 정의하여 이동물체 검출 및 지속적인 추적에 이용한다. 그래프 컷 알고리즘은 세 개의 큐를 결합하여 시공간 영상분할을 수행함으로써 이동 및 이동 중 정지물체를 검출한다. 제안하는 방법은 이동물체 뿐 아니라 이동 중 정지물체에 대해서도 검출이 가능함을 실험을 통해 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.