• Title/Summary/Keyword: Spatially Multiplexed MIMO

Search Result 18, Processing Time 0.025 seconds

An Improved Ordering Method for MIMO Signal Detection Using QR Decomposition and Successive Interference Cancellation (QR 분해 및 순차적 간섭제거 기반의 MIMO 신호검출 기법을 위한 향상된 순서화 방법)

  • Bak, Sang-Hyun;Kim, Jae-Kwon;Yang, Won-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.1010-1015
    • /
    • 2009
  • In this paper, we propose a novel detection ordering technique for MIMO signal detection methods based on QR decomposition and successive interference cancellation (SIC). Recently, new signal detection methods for spatially multiplexed (SM) MIMO systems were proposed, where all the constellation points are tried as the first layer symbol, and the remaining layer symbols are estimated via SIC, producing candidate vectors. Finally, the ML metric values are calculated for the candidate vectors, that are again used to select the best symbol vector. It was also shown that the ordering method in the conventional V-BLAST is not suitable to these signal detection methods. In this paper, we propose a novel ordering method, and we show via computer simulations that the proposed ordering method improves the error performance.

An Efficient Soft-Output MIMO Signal Detection Method Based on Multiple Channel Ordering Technique and Its VLSI Implementation (다중 채널 순서화 기술 기반 효율적인 Soft-Output MIMO 신호검출 기법과 VLSI 구현)

  • Im, Tae-Ho;Yu, Sung-Wook;Kim, Jae-Kwon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1044-1051
    • /
    • 2010
  • In this paper, we propose an efficient soft-output signal detection method for spatially multiplexed multiple input multiple output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC (ESIC) algorithm with a multiple ordering technique in a very efficient way. As a result, the log likelihood ratio (LLR) values can be computed by using a very small set of candidate symbol vectors. The proposed method has been implemented with a $0.13{\mu}m$ CMOS technology for a $4{\times}4$ 16-QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.

An Improved Search Space for QRM-MLD Signal Detection for Spatially Multiplexed MIMO Systems (공간다중화 MIMO 시스템의 QRM-MLD 신호검출을 위한 개선된 탐색공간)

  • Hur, Hoon;Woo, Hyun-Myung;Yang, Won-Young;Bahng, Seung-Jae;Park, Youn-Ok;Kim, Jae-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.403-410
    • /
    • 2008
  • In this paper, we propose a variant of the QRM-MLD signal detection method that is used for spatially multiplexed multiple antenna system. The original QRM-MLD signal detection method combines the QR decomposition with the M-algorithm, thereby significantly reduces the prohibitive hardware complexity of the ML signal detection method, still achieving a near ML performance. When the number of transmitter antennas and/or constellation size are increased to achieve higher bit rate, however, its increased complexity makes the hardware implementation challenging. In an effort to overcome this drawback of the original QRM-MLD, a number of variants were proposed. A most strong variant among them, in our opinion, is the ranking method, in which the constellation points are ranked and computation is performed for only highly ranked constellation points, thereby reducing the required complexity. However, the variant using the ranking method experiences a significant performance degradation, when compared with the original QRM-MLD. In this paper, we point out the reasons of the performance degradation, and we propose a novel variant that overcomes the drawbacks. We perform a set of computer simulations to show that the proposed method achieves a near performance of the original QRM-MLD, while its computational complexity is near to that of the QRM-MLD with ranking method.

Spectral and Energy Efficient Spatially Modulated Non-Orthogonal Multiple Access (NOMA) For 5G (5G를 위한 주파수 및 에너지 효율적인 공간 변조 비-직교 다중 접속 기법)

  • Irfan, Mohammad;Kim, Jin Woo;Shin, Soo Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1507-1514
    • /
    • 2015
  • Non-orthogonal multiple access (NOMA) is a promising candidate for 5G networks. NOMA achieves superior spectral efficiency than conventional orthogonal multiple access (OMA), as in NOMA multiple users uses the same time and frequency resources. Multiple-input-multiple-output (MIMO) is one another promising technique that can enhance system performance. In this paper we present a spectral and energy efficient multiple antenna based NOMA scheme, known as spatially modulated NOMA. In the proposed scheme the cell edge users are multiplexed in spatial domain, which means the information to cell edge users is conveyed using the transmit antenna indices. In NOMA the performance of cell edge users are deeply effected as it treats signals of others as noise. The proposed scheme achieves superior spectral efficiency than the conventional NOMA. The number of decoding steps involved in decoding NOMA signal reduces by one as cell edge user is multiplexed in spatial domain. The proposed scheme is more energy efficient as compare to conventional NOMA. All of the three gains high spectral, energy efficiency and one step reduction in decoding comes at cost of multiple transmit antennas at base station.

A Signal Detection Method for Uplink Multiuser Systems Based on Collaborative Spatial Multiplexing (협력적 공간다중화 기반 상향링크 다중사용자 시스템을 위한 신호검출 기법)

  • Im, Tae-Ho;Kim, Yeong-Jun;Jung, Jae-Hoon;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.229-237
    • /
    • 2010
  • The conventional detection methods developed for spatially-multiplexed MIMO systems such as OSIC and QRD-M show performance difference for each user depending on the order of detection when they are applied to detection of multi-user signals in uplink multiuser systems based on collaborative spatial multiplexing. In this paper, a signal detection method for uplink multiuser systems based on collaborative spatial multiplexing is proposed to provide similar performance for each user while its performance is close to the case of ML detection. Compared with QRD-M method, computational complexity of the proposed signal detection method is similar in the case of QPSK, and significantly lower in the case of high modulation order with 16-QAM and 64-QAM.

Performance analysis of maximum likelihood detection for the spatial multiplexing system with multiple antennas (다중 안테나를 갖는 공간 다중화 시스템을 위한 maximum likelihood 검출기의 성능 분석)

  • Shin Myeongcheol;Song Young Seog;Kwon Dong-Seung;Seo Jeongtae;Lee Chungyong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.103-110
    • /
    • 2005
  • The performance of maximum likelihood(ML) detection for the given channel is analyzed in spatially multiplexed MIMO system. In order to obtain the vector symbol error rate, we define error vectors which represent the geometrical relation between lattice points. The properties of error vectors are analyzed to show that all lattice points in infinite lattice almost surely have four nearest neighbors after random channel transformation. Using this information and minimum distance obtained by the modified sphere decoding algorithm, we formulate the analytical performance of vector symbol error over the given channel. To verify the result, we simulate ML performance over various random channel which are classified into three categories: unitary channel, dense channel, and sparse channel. From the simulation results, it is verified that the derived analytical result gives a good approximation about the performance of ML detector over the all random MIMO channels.

A Signal Detection Method based on the Double Detection for Spatially Multiplexed MIMO Systems (다중 안테나 시스템을 위한 이중 검출 기반의 신호검출 기법)

  • Kim, Jung-Hyun;Bahng, Seung-Jae;Park, Youn-Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.634-641
    • /
    • 2009
  • The goal of OSIC-series detection methods is to approach the ML performance with feasible complexity. However, since they sometimes suffer from the empty vector problem, they can not achieve the soft-output ML performance or many candidate vectors are required to achieve the soft-output ML performance. In this paper, we propose the novel detection method, which can generate the reliable soft-outputs without suffering from empty vector problem. The proposed detector can approach the near soft-output ML performance as well as hard-output. Further, the complexity study shows that the proposed detection method has the lowest complexity compared to the other detectors having the near ML performance.

A Novel Fixed-Complexity Signal Detection Technique Using Lattice Reduction for Multiple Antenna Systems (다중 안테나 시스템을 위한 고정된 연산 복잡도를 갖는 격자 감소 기반 신호 검출 기법)

  • Yang, Yusik;Suh, Dong Geun;Kim, Jaekwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.10-18
    • /
    • 2013
  • Recently, a fixed complexity LR(fcLR) technique was proposed. Also QR-LRL signal detection method was proposed in which all constellation symbols are tried as the symbol corresponding to the least reliable layer (LRL), thereby achieving high error performance. In this paper, we combine these two efficient methods to propose a novel detection method. When the LRL is disregarded in the process of LR, the worst case complexity of LR is significantly reduced. Also, the proposed method is shown to be superior to the conventional fcLR-based detection method from the perspective of error performance. Simulations are performed to demonstrate the efficacy of the proposed method.