• Title/Summary/Keyword: Spatial-Temporal Model

Search Result 787, Processing Time 0.025 seconds

The Integration of Mobile GIS and Spatio-temporal Database for Evaluating Space-time Accessibility of an Individual: An Approach Based on Time Geography Model

  • Lee Yang-Won;Shibasaki Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.753-758
    • /
    • 2005
  • This study attempts at building an integrated GIS computing framework for evaluating space-time accessibility of an individual with the approach of time geography model. The proposed method is based on the integration of mobile GIS and object-relational spatio-temporal database. Three components are central to our system: ( i ) mobile GIS application that transmits spatio-temporal trajectory data of an individual; ( ii ) spatio-temporal database server that incorporates the time geography model; and (iii) geovisualization client that provides time geographic queries to the spatio-temporal database. As for the mobile GIS application, spatio-temporal trajectory data collected by GPS-PDA client is automatically transmitted to the database server through mobile data management middleware. The spatio-temporal database server implemented by extending a generic DBMS provides spatio-temporal objects, functions and query languages. The geovisualization client illustrates 3D visual results of the queries about space-time path. space-time prism and space-time accessibility. This study shows a method of integrating mobile GIS and DBMS for time geography application, and presents an appropriate spatio-temporal data model for evaluating space-time accessibility of an individual.

  • PDF

Applicability Evaluation of Spatio-Temporal Data Fusion Using Fine-scale Optical Satellite Image: A Study on Fusion of KOMPSAT-3A and Sentinel-2 Satellite Images (고해상도 광학 위성영상을 이용한 시공간 자료 융합의 적용성 평가: KOMPSAT-3A 및 Sentinel-2 위성영상의 융합 연구)

  • Kim, Yeseul;Lee, Kwang-Jae;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1931-1942
    • /
    • 2021
  • As the utility of an optical satellite image with a high spatial resolution (i.e., fine-scale) has been emphasized, recently, various studies of the land surface monitoring using those have been widely carried out. However, the usefulness of fine-scale satellite images is limited because those are acquired at a low temporal resolution. To compensate for this limitation, the spatiotemporal data fusion can be applied to generate a synthetic image with a high spatio-temporal resolution by fusing multiple satellite images with different spatial and temporal resolutions. Since the spatio-temporal data fusion models have been developed for mid or low spatial resolution satellite images in the previous studies, it is necessary to evaluate the applicability of the developed models to the satellite images with a high spatial resolution. For this, this study evaluated the applicability of the developed spatio-temporal fusion models for KOMPSAT-3A and Sentinel-2 images. Here, an Enhanced Spatial and Temporal Adaptive Fusion Model (ESTARFM) and Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM), which use the different information for prediction, were applied. As a result of this study, it was found that the prediction performance of STGDFM, which combines temporally continuous reflectance values, was better than that of ESTARFM. Particularly, the prediction performance of STGDFM was significantly improved when it is difficult to simultaneously acquire KOMPSAT and Sentinel-2 images at a same date due to the low temporal resolution of KOMPSAT images. From the results of this study, it was confirmed that STGDFM, which has relatively better prediction performance by combining continuous temporal information, can compensate for the limitation to the low revisit time of fine-scale satellite images.

Digital Video Steganalysis Based on a Spatial Temporal Detector

  • Su, Yuting;Yu, Fan;Zhang, Chengqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.360-373
    • /
    • 2017
  • This paper presents a novel digital video steganalysis scheme against the spatial domain video steganography technology based on a spatial temporal detector (ST_D) that considers both spatial and temporal redundancies of the video sequences simultaneously. Three descriptors are constructed on XY, XT and YT planes respectively to depict the spatial and temporal relationship between the current pixel and its adjacent pixels. Considering the impact of local motion intensity and texture complexity on the histogram distribution of three descriptors, each frame is segmented into non-overlapped blocks that are $8{\times}8$ in size for motion and texture analysis. Subsequently, texture and motion factors are introduced to provide reasonable weights for histograms of the three descriptors of each block. After further weighted modulation, the statistics of the histograms of the three descriptors are concatenated into a single value to build the global description of ST_D. The experimental results demonstrate the great advantage of our features relative to those of the rich model (RM), the subtractive pixel adjacency model (SPAM) and subtractive prediction error adjacency matrix (SPEAM), especially for compressed videos, which constitute most Internet videos.

Combining 2D CNN and Bidirectional LSTM to Consider Spatio-Temporal Features in Crop Classification (작물 분류에서 시공간 특징을 고려하기 위한 2D CNN과 양방향 LSTM의 결합)

  • Kwak, Geun-Ho;Park, Min-Gyu;Park, Chan-Won;Lee, Kyung-Do;Na, Sang-Il;Ahn, Ho-Yong;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.681-692
    • /
    • 2019
  • In this paper, a hybrid deep learning model, called 2D convolution with bidirectional long short-term memory (2DCBLSTM), is presented that can effectively combine both spatial and temporal features for crop classification. In the proposed model, 2D convolution operators are first applied to extract spatial features of crops and the extracted spatial features are then used as inputs for a bidirectional LSTM model that can effectively process temporal features. To evaluate the classification performance of the proposed model, a case study of crop classification was carried out using multi-temporal unmanned aerial vehicle images acquired in Anbandegi, Korea. For comparison purposes, we applied conventional deep learning models including two-dimensional convolutional neural network (CNN) using spatial features, LSTM using temporal features, and three-dimensional CNN using spatio-temporal features. Through the impact analysis of hyper-parameters on the classification performance, the use of both spatial and temporal features greatly reduced misclassification patterns of crops and the proposed hybrid model showed the best classification accuracy, compared to the conventional deep learning models that considered either spatial features or temporal features. Therefore, it is expected that the proposed model can be effectively applied to crop classification owing to its ability to consider spatio-temporal features of crops.

TEMPORAL AND SPATIO-TEMPORAL DYNAMICS OF A MATHEMATICAL MODEL OF HARMFUL ALGAL INTERACTION

  • Mukhopadhyay, B.;Bhattacharyya, R.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.385-400
    • /
    • 2009
  • The adverse effect of harmful plankton on the marine ecosystem is a topic of deep concern. To investigate the role of such phytoplankton, a mathematical model containing distinct dynamical equations for toxic and non-toxic phytoplankton is analyzed. Stability analysis of the resulting three equation model is carried out. A continuous time variation in toxin liberation process is incorporated into the model and a stability analysis of the resulting delay model is performed. The distributed delay model is then extended to include the spatial distribution of plankton and the delay-diffusion model is analyzed with spatial and spatiotemporal kernels. Conditions for diffusion-driven instability in both the cases are derived and compared to explore the significance of these kernels. Numerical studies are performed to justify analytical findings.

  • PDF

GIS Application Model for Temporal and Spatial Simulation of Surface Runoff from a small watershed (소유역 지표유출의 시간적 . 공간적 재현을 위한 GIS응용모형)

  • 정하우;김성준;최진용;김대식
    • Spatial Information Research
    • /
    • v.3 no.2
    • /
    • pp.135-146
    • /
    • 1995
  • The purpose of this study is to develop a GIS application and interface model (GISCELWAB) for the temporal and spatial simulation of surface runoff from a small watershed. The model was constituted by three sub - models : The input data extraction model (GISINDATA) which prepares cell-based input data automatically for a given watershed, the cell water balance model(CELWAB) which calculates the water balance for a cell and simulates surface runoff of watershed simultaneously by the interaction of cells, and the output data management model(GISOUTDISP) which visualize the results of temporal and spatial variation of surface runoff. The input data extraction model was developed to solve the time-consuming problems for the input-data preparation of distributed hydrologic model. The input data for CELWAB can be obtained by extracting ASCII data from a vector map. The output data management model was developed to convert the storage depth and discharge of cell into grid map. This model ean-bles to visualize the temporal and spatial formulation process of watershed storage depth and surface runoff wholly with time increment.

  • PDF

Finite element modeling of laser ultrasonics nondestructive evaluation technique in ablation regime

  • Salman Shamsaei;Farhang Honarvar
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.219-236
    • /
    • 2023
  • In this paper, finite element modeling of the laser ultrasonics (LU) process in ablation regime is of interest. The momentum resulting from the removal of material from the specimen surface by the laser beam radiation in ablation regime is modeled as a pressure pulse. To model this pressure pulse, two equations are required: one for the spatial distribution and one for the temporal distribution of the pulse. Previous researchers have proposed various equations for the spatial and temporal distributions of the pressure pulse in different laser applications. All available equations are examined and the best combination of the temporal and spatial distributions of the pressure pulse that provides the most accurate results is identified. This combination of temporal and spatial distributions has never been used for modeling laser ultrasonics before. Then by using this new model, the effects of variations in pulse duration and laser spot radius on the shape, amplitude, and frequency spectrum of ultrasonic waves are studied. Furthermore, the LU in thermoelastic regime is simulated by this model and compared with LU in ablation regime. The interaction of ultrasonic waves with a defect is also investigated in the LU process in ablation regime. Good agreement of the results obtained from the new finite element model and available experimental data confirms the accuracy of the proposed model.

Modeling pediatric tumor risks in Florida with conditional autoregressive structures and identifying hot-spots

  • Kim, Bit;Lim, Chae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1225-1239
    • /
    • 2016
  • We investigate pediatric tumor incidence data collected by the Florida Association for Pediatric Tumor program using various models commonly used in disease mapping analysis. Particularly, we consider Poisson normal models with various conditional autoregressive structure for spatial dependence, a zero-in ated component to capture excess zero counts and a spatio-temporal model to capture spatial and temporal dependence, together. We found that intrinsic conditional autoregressive model provides the smallest Deviance Information Criterion (DIC) among the models when only spatial dependence is considered. On the other hand, adding an autoregressive structure over time decreases DIC over the model without time dependence component. We adopt weighted ranks squared error loss to identify high risk regions which provides similar results with other researchers who have worked on the same data set (e.g. Zhang et al., 2014; Wang and Rodriguez, 2014). Our results, thus, provide additional statistical support on those identied high risk regions discovered by the other researchers.

An Empirical Study on the Estimation of Housing Sales Price using Spatiotemporal Autoregressive Model (시공간자기회귀(STAR)모형을 이용한 부동산 가격 추정에 관한 연구)

  • Chun, Hae Jung;Park, Heon Soo
    • Korea Real Estate Review
    • /
    • v.24 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • This study, as the temporal and spatial data for the real price apartment in Seoul from January 2006 to June 2013, empirically compared and analyzed the estimation result of apartment price using OLS by hedonic price model for the problem of space-time correlation, temporal autoregressive model (TAR) considering temporal effect, spatial autoregressive model (SAR) spatial effect and spatiotemporal autoregressive model (STAR) spatiotemporal effect. As a result, the adjusted R-square of STAR model was increased by 10% compared that of OLS model while the root mean squares error (RMSE) was decreased by 18%. Considering temporal and spatial effect, it is observed that the estimation of apartment price is more correct than the existing model. As the result of analyzing STAR model, the apartment price is affected as follows; area for apartment(-), years of apartment(-), dummy of low-rise(-), individual heating (-), city gas(-), dummy of reconstruction(+), stairs(+), size of complex(+). The results of other analysis method were the same. When estimating the price of real estate using STAR model, the government officials can improve policy efficiency and make reasonable investment based on the objective information by grasping trend of real estate market accurately.

Simulation Models for Investigation of Multiuser Scheduling in MIMO Broadcast Channels

  • Lee, Seung-Hwan;Thompson, John S.
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.765-773
    • /
    • 2008
  • Spatial correlation is a result of insufficient antenna spacing among multiple antenna elements, while temporal correlation is caused by Doppler spread. This paper compares the effect of spatial and temporal correlation in order to investigate the performance of multiuser scheduling algorithms in multiple-input multiple-output (MIMO) broadcast channels. This comparison includes the effect on the ergodic capacity, on fairness among users, and on the sum-rate capacity of a multiuser scheduling algorithm utilizing statistical channel state information in spatio-temporally correlated MIMO broadcast channels. Numerical results demonstrate that temporal correlation is more meaningful than spatial correlation in view of the multiuser scheduling algorithm in MIMO broadcast channels. Indeed, the multiuser scheduling algorithm can reduce the effect of the Doppler spread if it exploits the information of temporal correlation appropriately. However, the effect of spatial correlation can be minimized if the antenna spacing is sufficient in rich scattering MIMO channels regardless of the multiuser scheduling algorithm used.

  • PDF