• Title/Summary/Keyword: Spatial scale

Search Result 1,689, Processing Time 0.053 seconds

Multi-scale Process-structural Analysis Considering the Stochastic Distribution of Material Properties in the Microstructure (미소 구조 물성의 확률적 분포를 고려한 하이브리드 성형 공정 연계 멀티스케일 구조 해석)

  • Jang, Kyung Suk;Kim, Tae Ri;Kim, Jeong Hwan;Yun, Gun Jin
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.188-195
    • /
    • 2022
  • This paper proposes a multiscale process-structural analysis methodology and applies to a battery housing part made of the short fiber-reinforced and fabric-reinforced composite layers. In particular, uncertainties of the material properties within the microscale representative volume element (RVE) were considered. The random spatial distribution of matrix properties in the microscale RVE was realized by the Karhunen-Loeve Expansion (KLE) method. Then, effective properties of the RVE reflecting on spatially varying matrix properties were obtained by the computational homogenization and mapped to a macroscale FE (finite element) model. Morever, through the hybrid process simulation, a FE (finite element) model mapping residual stress and fiber orientation from compression molding simulation is combined with one mapping fiber orientation from the draping process simulation. The proposed method is expected to rigorously evaluate the design requirements of the battery housing part and composite materials having various material configurations.

Stability Analysis of Pipe Rack Module for Underground Complex Plants Construction (복합플랜트 지하 건설을 위한 파이프랙 모듈 공법 안정 해석)

  • Kim, Sewon;Lee, Sangjun;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.113-124
    • /
    • 2021
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. In order to safely construct a large-scale plant facility in the underground space, it is necessary to increase the utilization of the limited space layout and minimize unnecessary columns. In this study, the plant modularization method(Pipe Rack Module) was reviewed to solve the problems of work constraints, assembly and demolition, process system interconnection, and maintenance that occur when plant facilities are underground. In addition, plant module analysis was performed by applying various load conditions (earthquake load, device load, earth pressure load, etc.) to improve spatial layout usability and secure structure stability. Based on the analysis results under various boundary condition, the implications regarding the minimum installation interval and module arrangement (draft) of basic modules required for the construction of an underground combined plant were derived.

Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping (경험적 분위사상법을 이용한 지역기후모형 기반 미국 강수 및 가뭄의 계절 예측 성능 개선)

  • Song, Chan-Yeong;Kim, So-Hee;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.637-656
    • /
    • 2021
  • The United States has been known as the world's major producer of crops such as wheat, corn, and soybeans. Therefore, using meteorological long-term forecast data to project reliable crop yields in the United States is important for planning domestic food policies. The current study is part of an effort to improve the seasonal predictability of regional-scale precipitation across the United States for estimating crop production in the country. For the purpose, a dynamic downscaling method using Weather Research and Forecasting (WRF) model is utilized. The WRF simulation covers the crop-growing period (March to October) during 2000-2020. The initial and lateral boundary conditions of WRF are derived from the Pusan National University Coupled General Circulation Model (PNU CGCM), a participant model of Asia-Pacific Economic Cooperation Climate Center (APCC) Long-Term Multi-Model Ensemble Prediction System. For bias correction of downscaled daily precipitation, empirical quantile mapping (EQM) is applied. The downscaled data set without and with correction are called WRF_UC and WRF_C, respectively. In terms of mean precipitation, the EQM effectively reduces the wet biases over most of the United States and improves the spatial correlation coefficient with observation. The daily precipitation of WRF_C shows the better performance in terms of frequency and extreme precipitation intensity compared to WRF_UC. In addition, WRF_C shows a more reasonable performance in predicting drought frequency according to intensity than WRF_UC.

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

Fermented Laminaria japonica improves working memory and antioxidant defense mechanism in healthy adults: a randomized, double-blind, and placebo-controlled clinical study

  • Kim, Young-Sang;Reid, Storm N.S.;Ryu, Jeh-Kwang;Lee, Bae-Jin;Jeon, Byeong Hwan
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.8
    • /
    • pp.450-461
    • /
    • 2022
  • A randomized, double-blind, and placebo-controlled clinical study was used to determine the cognitive functions related to working memory (WM) and antioxidant properties of fermented Laminaria japonica (FLJ) on healthy volunteers. Eighty participants were divided into a placebo group (n = 40) and FLJ group (n = 40) that received FLJ (1.5 g/day) for 6 weeks. Memory-related blood indices (brain-derived neurotrophic factor, BDNF; angiotensin-converting enzyme; human growth hormone, HGH; insulin-like growth factor-1, IGF-1) and antioxidant function-related indices (catalase, CAT; malondialdehyde, MDA; 8-oxo-2'-deoxyguanosine, 8-oxo-dG; thiobarbituric acid reactive substances, TBARS) were determined before and after the trial. In addition, standardized cognitive tests were conducted using the Cambridge Neuropsychological Test Automated Batteries. Furthermore, the Korean Wechsler Adult Intelligence Scale (K-WAIS)-IV, and the Korean version of the Montreal Cognitive Assessment (MoCA-K) were used to assess the pre and post intake changes on WM-related properties. According to the results, FLJ significantly increased the level of CAT, BDNF, HGH, and IGF-1. FLJ reduced the level of TBARS, MDA, and 8-oxo-dG in serum. Furthermore, FLJ improved physical activities related to cognitive functions such as K-WAIS-IV, MoCA-K, Paired Associates Learning, and Spatial Working Memory compared to the placebo group. Our results suggest that FLJ is a potential candidate to develop functional materials reflecting its capability to induce antioxidant mechanisms together with WM-related indices.

A Study on Implementation of a Disaster Crisis Alert System based on National Disaster Management System

  • Hyong-Seop, Shim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.55-63
    • /
    • 2023
  • In this paper, we propose a function and service of the Disaster Crisis Alert Management System that automatically analyzes the situation judgment criteria to issue a disaster crisis alert and a plan to operate in the National Disaster Management System(NDMS). In the event of a disaster, a crisis alert(interest-caution-alert-serious) is issued according to the crisis alert level. In order to automatically analyze and determine the crisis alert level, first, data collection, crisis alert level analysis, crisis alert level judgment, and disaster crisis alert management system that expresses the crisis alert level by spatial scale(province, city, district) were implemented. The crisis alert level was analyzed and expressed in two ways by applying the intelligent crisis alert level(determination of regional sensitivity, risk level, and crisis alert level) and the crisis alert standard of the crisis management manual(province-level standard setting). Second, standard metadata, linkage of situation information of target) and API standards for data provision are presented to jointly utilize data linkage and crisis alert data of the disaster and safety data sharing platform so that it can be operated within the NDMS.

Analysis on the Current Virtual Workplace Design Trends, and a Proposal for the Design Directions of the Future Virtual Workplace - Based on 12 Current Virtual Workplace Platforms - (가상 업무 공간의 디자인 현황 분석 및 향후 디자인 방법에 관한 제언 - 12개의 현행 사례의 비교분석을 중심으로 -)

  • Cho, Kyung hyun;Eum, Yu jeung;Choi, Hyeok jin;Lee, Seung Hyun;Cha, Seung Hyun
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.80-92
    • /
    • 2022
  • Recently, remote work has arisen due to the social atmosphere and advancement of digital technology. Although effective in premeditated communications such as conferences or meetings, the current technology such as messengers and video chats insufficiently supports impromptu communications like a chance encounter, daily conversation with colleagues, or brief instant meetings. This causes various problems such as a decrease in social belonging and an increase in social isolation. The virtual workplace, which emerged as an alternative to this technology, is merely replicating the workplace layouts in reality with an absence of the proper design guideline. Therefore, this paper aims to establish the foundation for the better design of the virtual workplace for remote-work employees. The research compared 12 current workplace cases with the analysis with 5 categories(Spatial Composition, Scale, Individual & Collaboration Workplace, Socializing Space), and discovered the following results: 1) some design principles of the real workplace can be applied on the virtual workplace design, 2) the architectural components of the virtual workplace can differ from them of the real. Based on the results, the research suggests both the appropriate design methodologies of the virtual workplace considering the design principles of the real office layouts, and the design direction for the future of the virtual workplace. This research will be the foundation for the future design of the virtual workplace.

Projecting forest fire potential in the Baekdudaegan of the Chungcheong region under the SSP scenario climate change using KBDI Drought Index (KBDI 가뭄지수를 이용한 SSP 기후변화 시나리오하의 충청지역 백두대간 산불 잠재력 전망)

  • Choi, Jaeyong;Kim, Su-Jin;Jung, Huicheul;Kim, Sung-Yeol;Moon, Geon-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, climate change has been regarded as a major cause of large-scale forest fires worldwide, and there is concern that more frequent and severe forest fires will occur due to the level of greenhouse gas emissions. In this study, the daily Keetch and Byram Drought Index (KBDI) of the Baekdudaegan in Chungcheong region including Sobaeksan, Songnisan, and Woraksan National Parks were calculated to assess effect of climate change on the forest fire potential- severity of annual maximum KBDI and frequency of high KBDI days. The present (2000~2019) and future KBDI(2021~2040, 2041~2060, 2081~2090) were calculated based on the meteorological observation and the ensemble regional climate model of the SSP1-2.6 and SSP5-8.5 scenarios with a spatial resolution of 1-km provided by Korea Meteorological Administration(KMA). Under the SSP5-8.5 scenario, 6.5℃ increase and 14% precipitation increase are expected at the end of the 21st century. The severity of maximum daily KBDI increases by 48% (+50mm), and the frequency of high KBDI days (> 100 KBDI) increases more than 100 days, which means the high potential for serious forest fires. The analysis results showed that Songnisan National Park has the highest potential for forest fire risk and will continue to be high in intensity and frequency in the future. It is expected that the forest vulnerability of the Baekdudaegan in the Chungcheong region will greatly increase and the difficulty in preventing and suppressing forest fires will increase as the abundance of combustible materials increases along with climate changes.

Occurrence and Spatial Distribution of Marine Mammals by Sighting Surveys in Korean Waters During 2011-2020 (2011-2020년간 목시조사에 의한 우리나라 연근해 해양포유류 출현 및 분포 현황)

  • Lee, Jong Hee;Kim, Eun Ho;Lee, Kyunglee;Park, Kyum Joon;An, Yong-Rock;Kim, Hyun Woo;Sohn, Hawsun;Choi, Seok-Gwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.938-945
    • /
    • 2022
  • National Institute of Fisheries Science conducted a total of 39 sighting surveys for marine mammals over 624 sighting days that covered 20,771 nautical miles in Korean waters during 2011-2020. Marine mammals were detected when 83.9% of the marine environment was less than or equal to three on the Beaufort wind scale. Thirteen species of marine mammals were identified, including two species of pinniped, with a majority of cetacean species. Frequently found species were narrow-ridged finless porpoise, followed by common dolphin, minke whale, Dall's porpoise, and Pacific white-sided dolphin. Narrow-ridged finless porpoises and minke whales were located in and offshore around the Korean peninsula, common and Pacific white-sided dolphins were exclusively found in the East Sea for most seasons. The other marine mammals were spotted in some seas and for limited durations.

Spatial relationship between distribution of common minke whale (Balaenoptera acutorostrata) and satellite sea surface temperature observed in the East Sea, Korea in May from 2003 to 2020 (2003-2020년 5월 한국 동해안 밍크고래(Balaenoptera acutorostrata) 분포와 위성 표층수온과의 공간적 관계)

  • YAMADA, Keiko;YOO, Joon-Taek
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.281-287
    • /
    • 2022
  • The distributions of common minke whales observed in the East Sea in ten surveys in May of 2003, 2005, 2006, 2007, 2009, 2010, 2012, 2015, 2016 and 2020 were investigated using satellite sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectrometer (MODIS). Most of the minke whales were observed in the waters off the Korean Peninsula at 36-38.5° N, which is expected as the highly productive coastal upwelling area. Yet, no minke whale was observed in 2006 when a relatively larger scale coastal upwelling occurred with SST at 11℃. In 2016 and 2020, the warm water higher than 17℃ extended widely in the area, and the minke whales were observed in the offshore waters, deeper than 1,000 m. 87.5% of minke whales observed in May appeared in the SST from 13 to 16℃, and they seemed to avoid relatively high temperatures. This suggests that optimum habitat water temperature of minke whales in May is 13-16℃. The SST in the area had risen 1.67℃ from 2003 to 2021, and it was remarkably higher than in other parts of the surrounding areas. The future temperature rising may change the route and timing of the migration of minke whales in the study area.