• Title/Summary/Keyword: Spatial random forest

Search Result 98, Processing Time 0.03 seconds

A Multi-category Task for Bitrate Interval Prediction with the Target Perceptual Quality

  • Yang, Zhenwei;Shen, Liquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4476-4491
    • /
    • 2021
  • Video service providers tend to face user network problems in the process of transmitting video streams. They strive to provide user with superior video quality in a limited bitrate environment. It is necessary to accurately determine the target bitrate range of the video under different quality requirements. Recently, several schemes have been proposed to meet this requirement. However, they do not take the impact of visual influence into account. In this paper, we propose a new multi-category model to accurately predict the target bitrate range with target visual quality by machine learning. Firstly, a dataset is constructed to generate multi-category models by machine learning. The quality score ladders and the corresponding bitrate-interval categories are defined in the dataset. Secondly, several types of spatial-temporal features related to VMAF evaluation metrics and visual factors are extracted and processed statistically for classification. Finally, bitrate prediction models trained on the dataset by RandomForest classifier can be used to accurately predict the target bitrate of the input videos with target video quality. The classification prediction accuracy of the model reaches 0.705 and the encoded video which is compressed by the bitrate predicted by the model can achieve the target perceptual quality.

Analysis of algal spatial distribution characteristics using hyperspectral images and machine learning in upstream reach of Baekje weir (초분광영상과 머신러닝을 이용한 백제보 상류구간 조류 공간분포 특성분석)

  • Jang, Wonjin;Kim, Jinuk;Chung, Jeehun;Park, Yongeun;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.89-89
    • /
    • 2021
  • 부영양화된 호수나 유속이 느린 하천에서 발생하는 녹조의 과도한 발생은 하천 생태계 훼손, 동식물의 건강, 담수의 오염 등 환경 사회 경제적으로 큰 피해를 준다. 현재 수질 측정망은 정해진 지점에서 Chlorophyll-a(Chl-a), Phycocyanin(PC)을 대표농도로 산정하고 조류경보에 활용하고 있으나, 일주일에 한번씩 샘플링을 통해 Chl-a 및 PC를 측정하여 시공간적인 신뢰성의 문제가 제기될 수 있다. 본 연구에서는 기존 점단위 조류 모니터링의 한계점을 개선하기 위해 초분광영상 자료를 머신러닝 기법에 적용하여 Chl-a 및 PC 산정 알고리즘을 개발하였다. 이를 위해 Chl-a와 PC의 최대 흡수, 반사 파장대, 주요 물 흡수 파장대 자료를 조합하여 9개의 파장비를 구축하였으며, 기존 연구에서 활용한 머신러닝 기법인 Partial Least Square, Random Forest, Gradient Boosting, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Network를 검토하여 최적 모델을 선정하였다. 학습된 머신러닝의 성능을 R2, NSE, RMSE 목적함수를 이용해 평가하였으며, 그 결과 ANN이 각각 PC 0.801, 0.755, 11.774 mg/m3, Chl-a 0.733, 0.622, 8.736 mg/m3로 가장 우수한 성능을 보였다. 최적화 된 ANN 모델을 백제보 상류 2016-2017년 항공 초분광영상에 적용하여 시공간에 따른 조류 분포변화를 평가하고자 한다.

  • PDF

Estimation of Fractional Vegetation Cover in Sand Dunes Using Multi-spectral Images from Fixed-wing UAV

  • Choi, Seok Keun;Lee, Soung Ki;Jung, Sung Heuk;Choi, Jae Wan;Choi, Do Yoen;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.431-441
    • /
    • 2016
  • Since the use of UAV (Unmanned Aerial Vehicle) is convenient for the acquisition of data on broad or inaccessible regions, it is nowadays used to establish spatial information for various fields, such as the environment, ecosystem, forest, or for military purposes. In this study, the process of estimating FVC (Fractional Vegetation Cover), based on multi-spectral UAV, to overcome the limitations of conventional methods is suggested. Hence, we propose that the FVC map is generated by using multi-spectral imaging. First, two types of result classifications were obtained based on RF (Random Forest) using RGB images and NDVI (Normalized Difference Vegetation Index) with RGB images. Then, the result map was reclassified into vegetation and non-vegetation. Finally, an FVC map-based RF were generated by using pixel calculation and FVC map-based GI (Gutman and Ignatov) model were indirectly made by fixed parameters. The method of adding NDVI shows a relatively higher accuracy compared to that of adding only RGB, and in particular, the GI model shows a lower RMSE (Root Mean Square Error) with 0.182 than RF. In this regard, the availability of the GI model which uses only the values of NDVI is higher than that of RF whose accuracy varies according to the results of classification. Our results showed that the GI mode ensures the quality of the FVC if the NDVI maintained at a uniform level. This can be easily achieved by using a UAV, which can provide vegetation data to improve the estimation of FVC.

Application of machine learning models for estimating house price (단독주택가격 추정을 위한 기계학습 모형의 응용)

  • Lee, Chang Ro;Park, Key Ho
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.2
    • /
    • pp.219-233
    • /
    • 2016
  • In social science fields, statistical models are used almost exclusively for causal explanation, and explanatory modeling has been a mainstream until now. In contrast, predictive modeling has been rare in the fields. Hence, we focus on constructing the predictive non-parametric model, instead of the explanatory model. Gangnam-gu, Seoul was chosen as a study area and we collected single-family house sales data sold between 2011 and 2014. We applied non-parametric models proposed in machine learning area including generalized additive model(GAM), random forest, multivariate adaptive regression splines(MARS) and support vector machines(SVM). Models developed recently such as MARS and SVM were found to be superior in predictive power for house price estimation. Finally, spatial autocorrelation was accounted for in the non-parametric models additionally, and the result showed that their predictive power was enhanced further. We hope that this study will prompt methodology for property price estimation to be extended from traditional parametric models into non-parametric ones.

  • PDF

Projecting the spatial-temporal trends of extreme climatology in South Korea based on optimal multi-model ensemble members

  • Mirza Junaid Ahmad;Kyung-sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.314-314
    • /
    • 2023
  • Extreme climate events can have a large impact on human life by hampering social, environmental, and economic development. Global circulation models (GCMs) are the widely used numerical models to understand the anticipated future climate change. However, different GCMs can project different future climates due to structural differences, varying initial boundary conditions and assumptions about the physical phenomena. The multi-model ensemble (MME) approach can improve the uncertainties associated with the different GCM outcomes. In this study, a comprehensive rating metric was used to select the best-performing GCMs out of 11 CMIP5 and 13 CMIP6 GCMs, according to their skills in terms of four temporal and five spatial performance indices, in replicating the 21 extreme climate indices during the baseline (1975-2017) in South Korea. The MME data were derived by averaging the simulations from all selected GCMs and three top-ranked GCMs. The random forest (RF) algorithm was also used to derive the MME data from the three top-ranked GCMs. The RF-derived MME data of the three top-ranked GCMs showed the highest performance in simulating the baseline extreme climate which was subsequently used to project the future extreme climate indices under both the representative concentration pathway (RCP) and the socioeconomic concentration pathway scenarios (SSP). The extreme cold and warming indices had declining and increasing trends, respectively, and most extreme precipitation indices had increasing trends over the period 2031-2100. Compared to all scenarios, RCP8.5 showed drastic changes in future extreme climate indices. The coasts in the east, south and west had stronger warming than the rest of the country, while mountain areas in the north experienced more extreme cold. While extreme cold climatology gradually declined from north to south, extreme warming climatology continuously grew from coastal to inland and northern mountainous regions. The results showed that the socially, environmentally and agriculturally important regions of South Korea were at increased risk of facing the detrimental impacts of extreme climatology.

  • PDF

Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV (고정익 UAV를 이용한 고해상도 영상의 토지피복분류)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.501-509
    • /
    • 2018
  • Purpose: UAV-based photo measurements are being researched using UAVs in the space information field as they are not only cost-effective compared to conventional aerial imaging but also easy to obtain high-resolution data on desired time and location. In this study, the UAV-based high-resolution images were used to perform the land cover classification. Method: RGB cameras were used to obtain high-resolution images, and in addition, multi-distribution cameras were used to photograph the same regions in order to accurately classify the feeding areas. Finally, Land cover classification was carried out for a total of seven classes using created ortho image by RGB and multispectral camera, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix) using RF (Random Forest), a representative supervisory classification system. Results: To assess the accuracy of the classification, an accuracy assessment based on the error matrix was conducted, and the accuracy assessment results were verified that the proposed method could effectively classify classes in the region by comparing with the supervisory results using RGB images only. Conclusion: In case of adding orthoimage, multispectral image, NDVI and GLCM proposed in this study, accuracy was higher than that of conventional orthoimage. Future research will attempt to improve classification accuracy through the development of additional input data.

Study on Detection for Cochlodinium polykrikoides Red Tide using the GOCI image and Machine Learning Technique (GOCI 영상과 기계학습 기법을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Unuzaya, Enkhjargal;Bak, Su-Ho;Hwang, Do-Hyun;Jeong, Min-Ji;Kim, Na-Kyeong;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1089-1098
    • /
    • 2020
  • In this study, we propose a method to detect red tide Cochlodinium Polykrikoide using by machine learning and geostationary marine satellite images. To learn the machine learning model, GOCI Level 2 data were used, and the red tide location data of the National Fisheries Research and Development Institute was used. The machine learning model used logistic regression model, decision tree model, and random forest model. As a result of the performance evaluation, compared to the traditional GOCI image-based red tide detection algorithm without machine learning (Son et al., 2012) (75%), it was confirmed that the accuracy was improved by about 13~22%p (88~98%). In addition, as a result of comparing and analyzing the detection performance between machine learning models, the random forest model (98%) showed the highest detection accuracy.It is believed that this machine learning-based red tide detection algorithm can be used to detect red tide early in the future and track and monitor its movement and spread.

Seismic Vulnerability Assessment and Mapping for 9.12 Gyeongju Earthquake Based on Machine Learning (기계학습을 이용한 지진 취약성 평가 및 매핑: 9.12 경주지진을 대상으로)

  • Han, Jihye;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1367-1377
    • /
    • 2020
  • The purpose of this study is to assess the seismic vulnerability of buildings in Gyeongju city starting with the earthquake that occurred in the city on September 12, 2016, and produce a seismic vulnerability map. 11 influence factors related to geotechnical, physical, and structural indicators were selected to assess the seismic vulnerability, and these were applied as independent variables. For a dependent variable, location data of the buildings that were actually damaged in the 9.12 Gyeongju Earthquake was used. The assessment model was constructed based on random forest (RF) as a mechanic study method and support vector machine (SVM), and the training and test dataset were randomly selected with a ratio of 70:30. For accuracy verification, the receiver operating characteristic (ROC) curve was used to select an optimum model, and the accuracy of each model appeared to be 1.000 for RF and 0.998 for SVM, respectively. In addition, the prediction accuracy was shown as 0.947 and 0.926 for RF and SVM, respectively. The prediction values of the entire buildings in Gyeongju were derived on the basis of the RF model, and these were graded and used to produce the seismic vulnerability map. As a result of reviewing the distribution of building classes as an administrative unit, Hwangnam, Wolseong, Seondo, and Naenam turned out to be highly vulnerable regions, and Yangbuk, Gangdong, Yangnam, and Gampo turned out to be relatively safer regions.

Application and development of a machine learning based model for identification of apartment building types - Analysis of apartment site characteristics based on main building shape - (머신러닝 기반 아파트 주동형상 자동 판별 모형 개발 및 적용 - 주동형상에 따른 아파트 개발 특성분석을 중심으로 -)

  • Sanguk HAN;Jungseok SEO;Sri Utami Purwaningati;Sri Utami Purwaningati;Jeongseob KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.55-67
    • /
    • 2023
  • This study aims to develop a model that can automatically identify the rooftop shape of apartment buildings using GIS and machine learning algorithms, and apply it to analyze the relationship between rooftop shape and characteristics of apartment complexes. A database of rooftop data for each building in an apartment complex was constructed using geospatial data, and individual buildings within each complex were classified into flat type, tower type, and mixed types using the random forest algorithm. In addition, the relationship between the proportion of rooftop shapes, development density, height, and other characteristics of apartment complexes was analyzed to propose the potential application of geospatial information in the real estate field. This study is expected to serve as a basic research on AI-based building type classification and to be utilized in various spatial and real estate analyses.

Mapping Mammalian Species Richness Using a Machine Learning Algorithm (머신러닝 알고리즘을 이용한 포유류 종 풍부도 매핑 구축 연구)

  • Zhiying Jin;Dongkun Lee;Eunsub Kim;Jiyoung Choi;Yoonho Jeon
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • Biodiversity holds significant importance within the framework of environmental impact assessment, being utilized in site selection for development, understanding the surrounding environment, and assessing the impact on species due to disturbances. The field of environmental impact assessment has seen substantial research exploring new technologies and models to evaluate and predict biodiversity more accurately. While current assessments rely on data from fieldwork and literature surveys to gauge species richness indices, limitations in spatial and temporal coverage underscore the need for high-resolution biodiversity assessments through species richness mapping. In this study, leveraging data from the 4th National Ecosystem Survey and environmental variables, we developed a species distribution model using Random Forest. This model yielded mapping results of 24 mammalian species' distribution, utilizing the species richness index to generate a 100-meter resolution map of species richness. The research findings exhibited a notably high predictive accuracy, with the species distribution model demonstrating an average AUC value of 0.82. In addition, the comparison with National Ecosystem Survey data reveals that the species richness distribution in the high-resolution species richness mapping results conforms to a normal distribution. Hence, it stands as highly reliable foundational data for environmental impact assessment. Such research and analytical outcomes could serve as pivotal new reference materials for future urban development projects, offering insights for biodiversity assessment and habitat preservation endeavors.