• Title/Summary/Keyword: Spatial network method

Search Result 544, Processing Time 0.027 seconds

Efficiency analysis in the presence of network effect with DEA method (네트워크 효과를 고려한 천연가스산업의 기술적 효율성 분석)

  • 이정동;오경준
    • Journal of Korea Technology Innovation Society
    • /
    • v.3 no.3
    • /
    • pp.36-52
    • /
    • 2000
  • This study takes an issue of efficiency analysis in the presence of network effect utilizing the DEA (Data Envelopment Analysis) framework. Network effect has important policy implication for the regulation of local monopolies which undertake their business through physical network, such as electricity, natural gas, local telephony, etc. If the difference in spatial condition between companies is not controlled properly, the performance comparison and associated incentive regulation bear significant bias. In this study, we propose a methodology to measure the true managerial or technical efficiency apart from efficiency difference accruing from the difference in spatial condition. A series of modified DEA efficiency models are combined to investigate the extent of exogenous and endogenous efficiency component in the Korean natural gas distribution companies. Empirical results show that the network effect plays significant role in determining superficial performance difference.

  • PDF

Spatial-Temporal Frough Analysis of South Korea Based On Neural Networks (신경망을 이용한 우리나라의 시공 간적 가뭄의 해석)

  • 신현석
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1998.05b
    • /
    • pp.7-13
    • /
    • 1998
  • A methodology to analyze and quantify regional meteorological drough based on annual precipitation data has been introduced in this paper In this study, based on posterior probability estimator and Bayesian classifier in Spatial Analysis Neural Network ISANN), point drought probabilities categorized as extreme, severe, mild, and non drought events has been defined, and a Bayesian Drought Severity Index (BPSI) has been introduced to classify the region of interest into four drought serverities. For example, the proposed methodology has been applied to analyze the regional drought of South Korea. This is a new method to classify and quantify the spatial or regional drought based on neural network pattern recognition technique and the results show that it may be apprepriate and valuable to analyze the spatial drought.

  • PDF

Modified YOLOv4S based on Deep learning with Feature Fusion and Spatial Attention (특징 융합과 공간 강조를 적용한 딥러닝 기반의 개선된 YOLOv4S)

  • Hwang, Beom-Yeon;Lee, Sang-Hun;Lee, Seung-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper proposed a feature fusion and spatial attention-based modified YOLOv4S for small and occluded detection. Conventional YOLOv4S is a lightweight network and lacks feature extraction capability compared to the method of the deep network. The proposed method first combines feature maps of different scales with feature fusion to enhance semantic and low-level information. In addition expanding the receptive field with dilated convolution, the detection accuracy for small and occluded objects was improved. Second by improving the conventional spatial information with spatial attention, the detection accuracy of objects classified and occluded between objects was improved. PASCAL VOC and COCO datasets were used for quantitative evaluation of the proposed method. The proposed method improved mAP by 2.7% in the PASCAL VOC dataset and 1.8% in the COCO dataset compared to the Conventional YOLOv4S.

Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution (단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.

A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration

  • Wang, Jianguo Jack;Wang, Jinling;Sinclair, David;Watts, Leo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.277-282
    • /
    • 2006
  • It is well known that Kalman filtering is an optimal real-time data fusion method for GPS/INS integration. However, it has some limitations in terms of stability, adaptability and observability. A Kalman filter can perform optimally only when its dynamic model is correctly defined and the noise statistics for the measurement and process are completely known. It is found that estimated Kalman filter states could be influenced by several factors, including vehicle dynamic variations, filter tuning results, and environment changes, etc., which are difficult to model. Neural networks can map input-output relationships without apriori knowledge about them; hence a proper designed neural network is capable of learning and extracting these complex relationships with enough training. This paper presents a GPS/INS integrated system that combines Kalman filtering and neural network algorithms to improve navigation solutions during GPS outages. An Extended Kalman filter estimates INS measurement errors, plus position, velocity and attitude errors etc. Kalman filter states, and gives precise navigation solutions while GPS signals are available. At the same time, a multi-layer neural network is trained to map the vehicle dynamics with corresponding Kalman filter states, at the same rate of measurement update. After the output of the neural network meets a similarity threshold, it can be used to correct INS measurements when no GPS measurements are available. Selecting suitable inputs and outputs of the neural network is critical for this hybrid method. Detailed analysis unveils that some Kalman filter states are highly correlated with vehicle dynamic variations. The filter states that heavily impact system navigation solutions are selected as the neural network outputs. The principle of this hybrid method and the neural network design are presented. Field test data are processed to evaluate the performance of the proposed method.

  • PDF

Determination and application of the weights for landslide susceptibility mapping using an artificial neural network

  • Lee, Moung-Jin;Won, Joong-Sun;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.71-76
    • /
    • 2003
  • The purpose of this study is the development, application and assessment of probability and artificial neural network methods for assessing landslide susceptibility in a chosen study area. As the basic analysis tool, a Geographic Information System (GIS) was used for spatial data management. A probability method was used for calculating the rating of the relative importance of each factor class to landslide occurrence, For calculating the weight of the relative importance of each factor to landslide occurrence, an artificial neural network method was developed. Using these methods, the landslide susceptibility index was calculated using the rating and weight, and a landslide susceptibility map was produced using the index. The results of the landslide susceptibility analysis, with and without weights, were confirmed from comparison with the landslide location data. The comparison result with weighting was better than the results without weighting. The calculated weight and rating can be used to landslide susceptibility mapping.

  • PDF

The Method of Creating the Road Network Database for an Integrated Road Management System (도로관리 종합정보 시스템을 위한 도로망 데이타베이스 구축방안)

  • 김충평;이강원;김경희
    • Spatial Information Research
    • /
    • v.3 no.1
    • /
    • pp.55-63
    • /
    • 1995
  • The database design, which logically sets the base structure and orga¬nization of the database, is performed by considering the users requirement, the relations between various data, and the relations between data and application field.The road network data must be created to have geometrical topological structure, because various data elements are needed to recognize the state of each section and to relate between data element. In this study, we propose a method of creating the road network database for an integrated road management system.

  • PDF

GAN-based Data Augmentation methods for Topology Optimization (위상 최적화를 위한 생산적 적대 신경망 기반 데이터 증강 기법)

  • Lee, Seunghye;Lee, Yujin;Lee, Kihak;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, a GAN-based data augmentation method is proposed for topology optimization. In machine learning techniques, a total amount of dataset determines the accuracy and robustness of the trained neural network architectures, especially, supervised learning networks. Because the insufficient data tends to lead to overfitting or underfitting of the architectures, a data augmentation method is need to increase the amount of data for reducing overfitting when training a machine learning model. In this study, the Ganerative Adversarial Network (GAN) is used to augment the topology optimization dataset. The produced dataset has been compared with the original dataset.

LANDSLIDE SUSCEPTIBILITY ANALYSIS USING GIS AND ARTIFICIAL NEURAL NETWORK

  • Lee, Moung-Jin;Won, Joong-Sun;Lee, Saro
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.256-272
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the newly developed techniques to the study area of Boun in Korea. Landslide locations were identified in the study area from interpretation of aerial photographs, field survey data, and a spatial database of the topography, soil type, timber cover, geology and land use. The landslide-related factors (slope, aspect, curvature, topographic type, soil texture, soil material, soil drainage, soil effective thickness, timber type, timber age, and timber diameter, timber density, geology and land use) were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods. For this, the weights of each factor were determinated in 3 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated and the susceptibility maps were made with a GIS program. The results of the landslide susceptibility maps were verified and compared using landslide location data. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to maintain precision and accuracy.

  • PDF

Estimating spatial distribution of water quality in landfill site

  • Yoon Hee-Sung;Lee Kang-Kun;Lee Seong-Soon;Lee Jin-Yong;Kim Jong-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.391-393
    • /
    • 2006
  • In this study, the performance of artificial neural network (ANN) models for estimating spatial distribution of water quality was evaluated using electric conductivity (EC) values in landfill site. For the ANN model development, feedforward neural networks and backpropagation algorithm with gradient descent method were used. In Test 1, the interpolation ability of the ANN model was evaluated. Results of the ANN model were more precise than those of the Kriging model. In Test 2, spatial distributions of EC values were predicted using precipitation data. Results seemed to be reasonable, however, they showed a limitation of ANN models in extrapolations.

  • PDF