• Title/Summary/Keyword: Spatial network method

Search Result 544, Processing Time 0.028 seconds

Efficient Processing of Spatial Preference Queries in Spatial Network Databases

  • Cho, Hyung-Ju;Attique, Muhammad
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.210-224
    • /
    • 2019
  • Given a positive integer k as input, a spatial preference query finds the k best data objects based on the scores (e.g., qualities) of feature objects in their spatial neighborhoods. Several solutions have been proposed for spatial preference queries in Euclidean space. A few algorithms study spatial preference queries in undirected spatial networks where each edge is undirected and the distance between two points is the length of the shortest path connecting them. However, spatial preference queries have not been thoroughly investigated in directed spatial networks where each edge has a particular orientation that makes the distance between two points noncommutative. Therefore, in this study, we present a new method called ALPS+ for processing spatial preference queries in directed spatial networks. We conduct extensive experiments with different setups to demonstrate the superiority of ALPS+ over conventional solutions.

Image Interpolation Using Multiple Neural Networks with Spatial Frequency Characteristic (공간 주파수 특성을 가지는 다중 신경 회로망을 이용한 영상 보간)

  • 우동헌;엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.135-141
    • /
    • 2004
  • Image interpolation is an image enlargement method that calculates an empty pixel value using the information of given pixel values. Since a natural image is composed of various spatial frequency components, it is difficult for one method to interpolate pixels with various spatial frequencies. In this paper, we propose an image interpolation method using multiple neural networks with spatial frequency characteristic. Input image is segmented according to spatial frequency by local variance, and each segmented image is interpolated using neural network established for spatial frequency band. The proposed method is applied to line doubling that becomes an important part in image interpolation because of deinterlacing. In simulation the proposed algorithm shows the improved PSNR result compared with conventional algorithms and method using single neural network.

Evaluation of Raingauge Networks in the Soyanggang Dam River Basin (소양강댐 유역의 강우관측망 적정성 평가)

  • Kim, Jae-Bok;Bae, Young-Dae;Park, Bong-Jin;Kim, Jae-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.178-182
    • /
    • 2007
  • In this study, we evaluated current raingauge network of Soyanggang dam region applying spatial-correlation analysis and Entropy theory to recommend an optimized raingauge network. In the process of analysis, correlation distance of raingauge stations is estimated and evaluated via spatial-correlation method and entropy method. From this correlation distances, respective influencing radii of each dataset and each methods is assessed. The result of correlation and entropy analysis has estimated correlation distance of 25.546km and influence radius of 7.206km, deducing a decrease of network density from $224.53km^2$ to $122.47km^2$ which satisfy the recommended minimum densities of $250km^2$ in mountainous regions(WMO, 1994) and an increase of basin coverage from 59.3% to 86.8%. As for the elevation analysis the relative evaluation ratio increased from 0.59(current) to 0.92(optimized) resulting an obvious improvement.

  • PDF

Deep Learning-based Super Resolution Method Using Combination of Channel Attention and Spatial Attention (채널 강조와 공간 강조의 결합을 이용한 딥 러닝 기반의 초해상도 방법)

  • Lee, Dong-Woo;Lee, Sang-Hun;Han, Hyun Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.15-22
    • /
    • 2020
  • In this paper, we proposed a deep learning based super-resolution method that combines Channel Attention and Spatial Attention feature enhancement methods. It is important to restore high-frequency components, such as texture and features, that have large changes in surrounding pixels during super-resolution processing. We proposed a super-resolution method using feature enhancement that combines Channel Attention and Spatial Attention. The existing CNN (Convolutional Neural Network) based super-resolution method has difficulty in deep network learning and lacks emphasis on high frequency components, resulting in blurry contours and distortion. In order to solve the problem, we used an emphasis block that combines Channel Attention and Spatial Attention to which Skip Connection was applied, and a Residual Block. The emphasized feature map extracted by the method was extended through Sub-pixel Convolution to obtain the super resolution. As a result, about PSNR improved by 5%, SSIM improved by 3% compared with the conventional SRCNN, and by comparison with VDSR, about PSNR improved by 2% and SSIM improved by 1%.

An Energy-Efficient Periodic Data Collection using Dynamic Cluster Management Method in Wireless Sensor Network (무선 센서 네트워크에서 동적 클러스터 유지 관리 방법을 이용한 에너지 효율적인 주기적 데이터 수집)

  • Yun, SangHun;Cho, Haengrae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.206-216
    • /
    • 2010
  • Wireless sensor networks (WSNs) are used to collect various data in environment monitoring applications. A spatial clustering may reduce energy consumption of data collection by partitioning the WSN into a set of spatial clusters with similar sensing data. For each cluster, only a few sensor nodes (samplers) report their sensing data to a base station (BS). The BS may predict the missed data of non-samplers using the spatial correlations between sensor nodes. ASAP is a representative data collection algorithm using the spatial clustering. It periodically reconstructs the entire network into new clusters to accommodate to the change of spatial correlations, which results in high message overhead. In this paper, we propose a new data collection algorithm, name EPDC (Energy-efficient Periodic Data Collection). Unlike ASAP, EPDC identifies a specific cluster consisting of many dissimilar sensor nodes. Then it reconstructs only the cluster into subclusters each of which includes strongly correlated sensor nodes. EPDC also tries to reduce the message overhead by incorporating a judicious probabilistic model transfer method. We evaluate the performance of EPDC and ASAP using a simulation model. The experiment results show that the performance improvement of EPDC is up to 84% compared to ASAP.

Scene-based Nonuniformity Correction by Deep Neural Network with Image Roughness-like and Spatial Noise Cost Functions

  • Hong, Yong-hee;Song, Nam-Hun;Kim, Dae-Hyeon;Jun, Chan-Won;Jhee, Ho-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.11-19
    • /
    • 2019
  • In this paper, a new Scene-based Nonuniformity Correction (SBNUC) method is proposed by applying Image Roughness-like and Spatial Noise cost functions on deep neural network structure. The classic approaches for nonuniformity correction require generally plenty of sequential image data sets to acquire accurate image correction offset coefficients. The proposed method, however, is able to estimate offset from only a couple of images powered by the characteristic of deep neural network scheme. The real world SWIR image set is applied to verify the performance of proposed method and the result shows that image quality improvement of PSNR 70.3dB (maximum) is achieved. This is about 8.0dB more than the improved IRLMS algorithm which preliminarily requires precise image registration process on consecutive image frames.

Spatial Analysis for Mean Annual Precipitation Based On Neural Networks (신경망 기법을 이용한 연평균 강우량의 공간 해석)

  • Sin, Hyeon-Seok;Park, Mu-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.3-13
    • /
    • 1999
  • In this study, an alternative spatial analysis method against conventional methods such as Thiessen method, Inverse Distance method, and Kriging method, named Spatial-Analysis Neural-Network (SANN) is presented. It is based on neural network modeling and provides a nonparametric mean estimator and also estimators of high order statistics such as standard deviation and skewness. In addition, it provides a decision-making tool including an estimator of posterior probability that a spatial variable at a given point will belong to various classes representing the severity of the problem of interest and a Bayesian classifier to define the boundaries of subregions belonging to the classes. In this paper, the SANN is implemented to be used for analyzing a mean annual precipitation filed and classifying the field into dry, normal, and wet subregions. For an example, the whole area of South Korea with 39 precipitation sites is applied. Then, several useful results related with the spatial variability of mean annual precipitation on South Korea were obtained such as interpolated field, standard deviation field, and probability maps. In addition, the whole South Korea was classified with dry, normal, and wet regions.

  • PDF

Permitted Limit Setting Method for Data Transmission in Wireless Sensor Network (무선 센서 네트워크에서 데이터 전송 허용범위의 설정 방법)

  • Lee, Dae-hee;Cho, Kyoung-woo;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.574-575
    • /
    • 2018
  • The generation of redundant data according to the spatial-temporal correlation in a wireless sensor network that reduces the network lifetime by consuming unnecessary energy. In this paper, data collection experiment through the particulate matter sensor is carried out to confirm the spatial-temporal data redundancy and we propose permitted limit setting method for data transmission to solve this problem. In the proposed method, the data transmission permitted limit is set by using the integrated average value in the cluster. The set permitted limit reduces the redundant data of the member node and it is shows that redundant data reduction is possible even in a variable environment of collected data by resetting the permitted limit in the cluster head.

  • PDF

DTN Routing Method using Spatial Regularity in Urban Area (도시 환경에서 지역적 주기성을 이용한 DTN 라우팅 기법)

  • Jeong, Jae-Seong;Lee, Kyung-Han;Lee, Joo-Hyun;Chong, Song
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.609-616
    • /
    • 2011
  • The Delay/Disruption Tolerant Network (DTN) is a network designed to operate effectively using the mobility and storage of intermediate nodes under no end-to-end guaranteed network. This new network paradigm is well-suited for networks which have unstable path and long latencies (e.g. interplanetary network, vehicular network). In this paper, we first found that each taxi has its own regularly visiting area and define this property as spatial regularity. We analyze 4000 taxi trace data in Shanghai and show the existence of spatial regularity experimentally. Based on a spatial regularity in urban environment, we present a new DTN routing method. We introduce a Weighted Center (WC) which represents spatial regularity of each node. Through the association with evenly distributed access points (APs) in urban environment, most of vehicles get their grid locations and calculate their WCs. Since our routing method only uses neighbors' WCs for building routing paths, it can be regarded as distributed and practical protocols. Our experiments involving realistic network scenarios created by the traces of about 1500 Shanghai taxies show that our routing method achieves the higher performance compared to ECT, LET by 10%~110%.

Development and application of artificial neural network for landslide susceptibility mapping and its verfication at Janghung, Korea

  • Yu, Young-Tae;Lee, Moung-Jin;Won, Joong-Sun
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the developed techniques to the study area of janghung in Korea. Landslide locations were identified in the study area from interpretation of satellite image and field survey data, and a spatial database of the topography, soil, forest and land use were consturced. The 13 landslide-related factors were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods, and the susceptibility map was made with a e15 program. For this, the weights of each factor were determinated in 5 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated using the weights and the susceptibility maps were made with a GIS to the 5 cases. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to analyze the landslide susceptibility.

  • PDF