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1. INTRODUCTION   

Recently, location-based services (LBSs) have

become popular due to the rapid growth of mobile

devices, availability of maps, and easy network ac-

cess [1, 2]. Thus, many studies have been per-

formed to process spatial queries, such as range

queries [3], k nearest neighbor (kNN) queries [4,

5, 6], reverse k nearest neighbor queries [7], and

road network distance queries [8, 9].

These spatial queries can be answered based on

their distance from the query point. In this study,

we investigate the spatial preference queries in di-

rected spatial networks where each edge has a par-

ticular orientation that makes the network distance

noncommutative, i.e., for two points  and  in

a directed graph,      is not

guaranteed. Note that   indicates the

length of the shortest path from  to , whereas

 indicates the length of the shortest path

from  to . A spatial preference query returns

a ranked list of the k best data objects based on

the scores of feature objects, such as facilities or

services in the neighborhood of data objects.

Spatial preference queries have a wide range of ap-

plications including spatial recommender systems

and spatial decision support systems. For example,

consider a real estate agent who holds a list of

available apartments for lease. A customer may

want to rank the available apartments with respect

to the quality of their locations, quantified by ag-

gregating nonspatial characteristics of other facili-

ties (e.g., parks, schools, hospitals, and markets)

in the spatial neighborhood of the apartments.

Fig. 1 presents a motivating example of a spatial

preference query in a directed spatial network
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where data objects , , and  are represented

by triangles and indicate the available apartments

for lease. Feature objects  and  are represented

by hollow rectangles, and another type of feature

objects , , and  are represented by solid rec-

tangles, which indicate parks and schools,

respectively. The number on an edge indicates the

distance between two neighboring objects, e.g.,

    and    . The number within

the parenthesis indicates the score of the feature

object beside the number. Consider a scenario

where a customer finds a list of available apart-

ments for lease that have good parks or schools

in their spatial neighborhoods. For simplicity, as-

sume that the customer has provided a spatial con-

straint   to limit the distance from each avail-

able apartment to the eligible parks and schools.

If apartments , , and  are sorted based on

the scores of parks only, the top-1 apartment be-

comes  because the scores of , , and  are

0, 0.9, and 0, respectively. Similarly, if the apart-

ments are sorted based on the scores of schools

only, the top-1 apartment becomes d1 because the

scores of , , and  are 0.8, 0.7, and 0.6,

respectively. Finally, if the apartments are sorted

based on the sum of the scores of parks and

schools, the top-1 apartment becomes  because

the scores of , , and  are 0.8, 1.6, and 0.6,

respectively.

Several algorithms have been proposed to proc-

ess spatial preference queries based on Euclidean

distance [10, 11, 12]. However, algorithms based on

Euclidean distance are not appropriate to spatial

network environments. A few algorithms have

been developed to evaluate spatial preference quer-

ies in undirected spatial networks where all edges

are undirected. However, spatial preference queries

in directed spatial networks were not yet thor-

oughly investigated. Our previous work referred to

as ALPS [13] is an attempt to evaluate spatial pref-

erence queries in undirected spatial networks.

Therefore, we propose a new method called ALPS+

to evaluate spatial preference queries efficiently in

directed spatial networks. In the proposed method,

data objects in a directed segment are collected and

then converted into a data segment. All pairs of

data segments and feature objects are mapped to

a distance-score space, and a subset of the pairs

that is adequate to evaluate spatial preference

queries is identified. To this end, we devise a

mathematical formula that computes the minimum

and maximum distances from the data segment to

the feature object in directed spatial networks.

Finally, we evaluate spatial preference queries effi-

ciently using the materialization of this subset of

the pairs, which makes it possible to avoid inves-

tigations of redundant feature objects during query

evaluation.

This study is an extended version of our pre-

vious work on spatial preference query processing

in undirected spatial networks. We extend the

techniques in [12] to process spatial preference

queries in directed spatial networks and present

extensive experimental results for efficiency

evaluation. The contributions of this study can be

summarized as follows.

∙We propose a new method called ALPS+ to

Fig. 1. Motivating example of spatial preference query in a directed spatial network.



212 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 22, NO. 2, FEBRUARY 2019

process spatial preference queries efficiently in

directed spatial networks.

∙We present materialization strategies to im-

prove the efficiency of the spatial preference

search algorithm that exploits grouping of data

objects and their skyline sets.

∙We conduct extensive experiments with differ-

ent setups to demonstrate the superiority of

ALPS+ over conventional solutions.

The remainder of this paper is organized as

follows. In Section 2, we review related studies. In

Section 3, we formulate the problem and define the

primary terms. In Section 4, we describe the gath-

ering of data objects in a segment and compute the

distance from the segment to a point. In Section

5, we elaborate on our solutions for processing

spatial preference queries in directed spatial net-

works. In Section 6, we empirically compare ALPS+

and conventional solutions for different setups.

Finally, we conclude this paper in Section 7.

2. RELATED WORK

Several algorithms were developed to process

spatial preference queries using Euclidean distance.

Yiu et al. [11, 12] first introduced spatial preference

queries based on three distinct spatial scores, i.e.,

range, nearest neighbor, and influence scores, and

proposed different algorithms to evaluate spatial

preference queries for these scores. Rocha-Junior

et al. [10] developed a materialization technique to

speed up the evaluation of spatial preference quer-

ies using Euclidean distance. They presented a

mapping of pairs of the data object and feature ob-

ject to a distance-score space. The minimal subset

of the pairs that is adequate to answer spatial pref-

erence queries is materialized. However, the tech-

niques based on Euclidean distance are not appli-

cable to our problem concerning network dis-

tance-based queries.

A few algorithms were developed to answer

spatial preference queries in undirected spatial

networks. Our previous work called ALPS [13] is

an attempt to evaluate spatial preference queries

in undirected spatial networks. Similar to [10],

ALPS exploits a materialization technique based on

the distance-score space. ALPS+ extends the func-

tionality of ALPS. Specifically, ALPS+ can evaluate

spatial preference queries in directed spatial net-

works as well as undirected spatial networks,

whereas ALPS can evaluate spatial preference

queries only in undirected spatial networks. This

study also presents the trade-off between query

processing time and index construction time when

a materialization technique is applied to process

spatial preference queries. Finally, in recent years,

different types of spatial queries have been studied

extensively. These include range queries [3], kNN

queries [4, 5, 6], spatial keyword queries [14, 15,

16], and spatial network distance queries [8, 9].

These studies have different problem settings from

ours and their solutions are not appropriate.

3. PRELIMINARIES

3.1 Problem formulation

Given a positive integer k, a set of data objects

{⋯}, and a set of m feature datasets

 {⋯
} for ≤ ≤ , the spatial prefer-

ence query retrieves a ranked list of the best k data

objects with the highest scores. The score of a data

object d is determined using the scores of feature

objects in the spatial neighborhood of the data

object. Each feature object f has a score, denoted

by  , that indicates its quality, such as user

evaluation score of the feature object. The scores

of feature objects are normalized in the range 

and can be combined using an aggregation function

to derive an overall quality rating.

The score  of a data object d is determined

by aggregating the component scores   max

{∈ ≤} ≤ ≤ with respect to

a range condition and the i-th feature dataset 

and can be formally defined as   
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{ ≤ ≤} where  {sum, max, min}. The

aggregation function agg can be any monotone

function. This study mainly considers the range

constraint. This is because that this study can be

easily extended to the nearest neighbor constraint

and the influence constraint. Recall that the com-

ponent score   is the highest score of feature

objects ∈ that satisfy the range constraint of

a data object d.

3.2 Definition of terms and notations

Directed spatial network A directed spatial net-

work can be modeled using a weighted directed

graph 〈〉, where N, E, and W indicate
the node set, edge set, and edge distance matrix,

respectively. Each edge has a positive weight and

direction.

Classification of nodes Nodes can be divided

into three categories based on the degree of the

node. (1) If the degree of a node is equal to or larger

than 3, the node is referred to as an intersection

node. (2) If it is 2, the node is an intermediate node.

(3) If it is 1, the node is a terminal node.

Edge sequence and segment An edge se-

quence   ⋯ denotes a path between two

nodes,  and  , such that  (or  ) is either an

intersection node or a terminal node, and the other

nodes in the path,   ⋯   , are intermediate

nodes. The two end nodes,  and  , are referred

to as boundary nodes of the edge sequence. If an

edge sequence forms a cycle, the boundary nodes

of the edge sequence are identical. The length of

an edge sequence is the total weight of the edges

in the edge sequence. A part of an edge sequence

is called a segment. Note that by definition, an edge

sequence is also a segment defined by the boun-

dary nodes of the edge sequence.

To simplify the presentation, Table 1 presents

the notations used in this paper. Our scheme works

in the same manner for undirected and directed

segments and an undirected segment is used for

convenience to describe the proposed scheme.

4. GROUPING AND DISTANCE COMPUTATION

4.1 Grouping of data objects in an edge sequence

The data objects in an edge sequence are gath-

ered and are referred to as data segment. The data

objects in a data segment are close to each other

Table 1. Summary of notations used in this paper

Symbol Definition

〈〉 Graph model of a directed spatial network

  Length of the shortest path from point  to point 

 
Length of the segment connecting  and  , such that  and  are in the same edge

sequence

 Node in a directed spatial network


Edge connecting two adjacent nodes  and 

   ⋯

Edge sequence where  (or  ) is the start (or end) of the edge sequence and the other

nodes,   ⋯   , are intermediate nodes

r Range constraint

k Number of data objects to be retrieved

m Number of feature datasets

mindist(dseg, p) Minimum distance from a data segment dseg to a point p

maxdist(dseg, p) Maximum distance from a data segment dseg to a point p
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in the spatial network; therefore, it is more effec-

tive to process them together than to process each

object separately. However, feature objects in an

edge sequence are not grouped because of frequent

wide range of variations in their scores.

Fig. 2 shows a sample grouping of data objects

in an edge sequence, which will be discussed

throughout this section. As shown in Fig. 2(a), four

data objects,  through , and four feature ob-

jects,  through , are in the directed spatial net-

work. To simplify the presentation, we consider a

single feature dataset  

{〈〉〈〉〈〉〈〉}. Each feature

dataset is processed independently; thus, the ex-

tension to multiple feature datasets is straightfor-

ward. The spatial network includes three edge se-

quences, ,
 , and
 , and two inter-

section nodes,  and . Fig. 2(b) illustrates the

result of grouping data objects in an edge sequence.

Specifically, data objects  and  are grouped and

transformed into the data segment  , which is

represented in the bold line. Similarly, data objects

 and  are grouped and transformed into the data

segment  . Therefore, {} is trans-

formed into { 
 }, where

 denotes the set

of data segments generated from the data objects

in D.

4.2 Computation of minimum and maximum dis-

tances from data segment to feature object

Let ⊗ denote a composite object that is

generated from a pair of a data segment dseg and

a feature object f, where ∈ and ∈ . Here,

⊗ is represented by ⊗([mindist(dseg,

f), maxdist(dseg, f)], ), where mindist(dseg, f)

and maxdist(dseg, f) indicate the minimum and

maximum distances from dseg to f, respectively.

We plot each ⊗ pair to the distance-score

space as shown in Fig. 3, where the x value corre-

sponds to the distance from a data segment dseg

to a feature f and the y value corresponds to the

score of a feature object f.

In a preprocessing step, a subset of ⊗ pairs

is selected and indexed using an R-tree [17, 18],

(a) (b)

Fig. 2. Grouping of data objects in an edge sequence. (a) Data objects d1 through d4 and (b) Data segments   

and  . 

(a) (b)

Fig. 3. Mapping of ⊗ to the distance-score space. (a)    and (b) ⊗ ([mindist(dseg, f), maxdist 

(dseg, f)], ).
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one of the most popular multi-dimensional access

methods. To this end, the minimum and maximum

distances from dseg to f must be computed. We

now discuss the computation of the minimum and

maximum distances from dseg to f in Fig. 2, where

∈{  } and ∈{}. Table 2 sum-
marizes the computation of the minimum and max-

imum distances from dseg to f.

Fig. 4(a), 4(b), 4(c), and 4(d) illustrate the com-

putations of minimum and maximum distances

from  to each of  ,  ,  , and  , respectively.

In the figures, the dashed lines denote that paths

from p to f are not the shortest paths for the corre-

sponding intervals. For data segment and feature

object  , we have    ,    , and

 ∉
 as shown in Table 2. Therefore, as shown

in Fig. 4(a), the minimum and maximum distances

from  to  are mindist
     and maxdist

    , respectively. For data segment 

and feature object  , we have    ,

   , and  ∉
 as shown in Table 2.

Therefore, as shown in Fig. 4(b), the minimum and

maximum distances from  to  are mindist

     and maxdist    , respectively.

For data segment  and feature object  , we

Table 2. Computation of minimum and maximum distances in Fig. 2

    ∈
           ∉



          ∉


          ∉


          ∉


           ∉


          ∉


          ∉


         ∈

(a) (b) (c) (d)

Fig. 4. Evaluation of mindist  and maxdist  where ∈{}. (a) mindist     and maxdist

    , (b) mindist     and maxdist    , (c) mindist     and maxdist

    , and (d) mindist     and maxdist    ,
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have    ,    , and  ∉
 as

shown in Table 2. Therefore, as shown in Fig. 4(c),

the minimum and maximum distances from  to

 are mindist     and maxdist

    , respectively. Finally, for data seg-

ment  and feature object  , we have

   ,    , and  ∉
 as

shown in Table 2. Therefore, as shown in Fig. 4(d),

the minimum and maximum distances from  to

 are mindist
     and maxdist    ,

respectively.

Fig. 5(a), 5(b), 5(c), and 5(d) illustrate the com-

putations of minimum and maximum distances

from  to each of  ,  ,  , and  , respectively.

For data segment  and feature object  , we

have    ,    , and  ∉
 as

shown in Table 2. Therefore, as shown in Fig. 5(a),

the minimum and maximum distances from  to

 are mindist
     and maxdist    ,

respectively. For data segment  and feature ob-

ject  , we have    ,    , and

 ∉
 as shown in Table 2. Therefore, as shown

in Fig. 5(b), the minimum and maximum distances

from to  are mindist
     and maxdist

    , respectively. For data segment 

and feature object  , we have    ,

   , and  ∉
 as shown in Table 2.

Therefore, as shown in Fig. 5(c), the minimum and

maximum distances from  to  are mindist

     and maxdist    , respectively.

Finally, for data segment  and feature object

 , we have    ,    , and

∈ as shown in Table 2. Therefore, as shown

in Fig. 5(d), the minimum and maximum distances

from to  are mindist
     and maxdist

    , respectively. Table 3 summarizes the

minimum and maximum distances along with the

scores for the ⊗ pairs in Fig. 2(b).

5. PROCESSING SPATIAL PREFERENCE 

QUERIES IN DIRECTED SPATIAL NET-

WORKS

(a) (b) (c) (d)

Fig. 5. Evaluation of mindist  and maxdist  where ∈{}. (a) mindist     and maxdist

    , (b) mindist     and maxdist    , (c) mindist     and maxdist

    , and (d) mindist     and maxdist    .
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5.1 Mapping pairs of data segment and feature 

object to distance-score space

We map ⊗ pairs to a distance-score space

M, defined by the axes distance and score. Each

⊗ pair is mapped to either a line segment or

a point in the distance-score space M. During the

preprocessing step, the dominance relationship is

used to remove redundant ⊗ pairs.

Definition 1 (Mapping of ⊗ to M) The

mapping of a pair that consists of each data seg-

ment ∈ and each feature object ∈ to the

distance-score space M is

⊗ {⊗∈∈}.

Definition 2 (Mapping of ⊗ to M) The

mapping of a pair that consists of a data segment

dseg and each feature object ∈ to the dis-

tance-score space M is ⊗ {⊗∈}.

⊗ is the union of all ⊗ pairs where each

∈ .
Definition 3 (Dominance relationship ≺ ) Given

two pairs of ⊗ and ⊗ , we state that

⊗ dominates ⊗ , denoted as

⊗ ≺⊗ , if maxdist  ≤mindist

  and    , or if maxdist  

mindist  and   ≥ .

Fig. 6 shows the mapping of ⊗ in Table 3

to the distance-score space M. Specifically, Fig.

6(a) and 6(b) show the mappings of ⊗ and

⊗ to M, respectively. In choosing ⊗

pairs, the shorter distance from a data segment

dseg to a feature object f as well as the higher

score of f is preferred. Therefore, in Fig. 6(a), the

Table 3. Summary of all sample ⊗ pairs

dseg  ⊗

 
⊗  


⊗  


⊗  


⊗  

 
⊗  


⊗  


⊗  


⊗  

(a) (b)

Fig. 6. Mapping of ⊗ to M where 
{ 

 } and 

 {}. (a) 
⊗ , (b) 

⊗ , and 

(c) ⊗ .

(c)
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⊗ pair dominates both
⊗ and

⊗

pairs, which are considered redundant. This domi-

nance is attributed to the smaller maxdist  

than mindist   and mindist
  , and

larger   than   and  . Thus,
⊗ and

⊗ pairs belong to the gray region, which in-

dicates the dominance region of ⊗ pair.

However, as shown in Fig. 6(b), no pair in ⊗

is dominated.

Let ⊗  be the set of pairs that are not

dominated by any other pair in ⊗ . We define

⊗  as the skyline set of ⊗ . There-

fore, we have ⊗  {
⊗

⊗} and

⊗  {
⊗

⊗
⊗

⊗} .

The pairs that are associated with different data

segments (e.g., ⊗ and
⊗ ) cannot be

dominated. Finally, the skyline set for ⊗ be-

comes the union of the skyline sets ⊗ 

where each ∈ , i.e.,
⊗   

∈
⊗ . Consequently,

as shown in Fig. 6(c),

⊗   ⊗ ∪⊗ .

Fig. 7(a) illustrates the mapping of the six pairs

in ⊗  to M. Fig. 7(b) shows an R-tree

that indexes these six pairs, assuming that the

node capacity of the R-tree is set to 3. Specifically,

index node  includes
⊗ ,

⊗ , and
⊗ .

Index node  includes
⊗ ,

⊗ , and

⊗ . ⊗  is sufficient to obtain the

component score of each data object ∈.

5.2 Processing spatial preference queries in 

directed spatial networks

In this section, we present an algorithm, called

ALPS+, for processing spatial preference queries in

directed spatial networks. For ease of presentation,

we focus on elaborating on the algorithm to re-

trieve top-k data objects based on the range score.

We then describe the necessary modifications for

supporting NN and influence scores. ALPS+ pro-

duces the query result with sequential access to

data objects in descending order of their component

scores, which is similar to the NRA (No Random

Access) algorithm [19]. To obtain the query result,

during query processing, ALPS+ retrieves qualify-

ing data objects individually in descending order

based on their component scores, which can rapidly

produce a set of the k best data objects with the

highest score. Recall that we use sum as the ag-

gregation function.

Algorithm 1 returns a set of top-k data objects

with the highest scores by adding the component

scores of data objects retrieved from max heaps

 ≤ ≤. For each skyline set ⊗ , we

employ a max heap  to explore data objects in

descending order based on their component scores

 . The root node of the R-tree  that indexes

(a) (b)

Fig. 7. ⊗  and the corresponding R-tree index. (a) ⊗  and (b) R-tree index for ⊗ .
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⊗  is first added to  . Max heaps

⋯ are accessed in a round robin fashion.

Whenever the pop_data_object_with_highest_score

function detailed in Algorithm 2 is called, the data

object dtop with the highest component score 

(dtop) is popped from max heap  (line 7). Let 

≤ ≤ be the last component score that has

been seen in  and T be a threshold (i.e., an upper

bound) for the aggregate score of the data objects

that have not been seen in any  yet. Then, 

is set to (dtop) and T is updated to sum

{≤ ≤} (lines 8-9). The lower bound score 

(dtop) of dtop is also updated with its component

score (dtop) (line 10). Let  be the current top-k

set and t be the lowest score of the data objects

in  . If   or (dtop) , then dtop is added

to  . For simplicity, it is assumed in lines 14-16

that  {⋯ } and

  ≥⋯≥  ≥   . If   , the data

object with the lowest  (i.e.,  ) is moved from

 to C, where C is the set of candidate data ob-

jects that may be included in the query result.

Finally, t is set to the lowest  from the data ob-

jects in  (lines 11-17). If  ≥, then no newly

seen data object can end up in  because T stores

the upper bound of the aggregate score of unseen

data objects in any max heap  . Therefore, if  

and dtop∉ , then dtop is added to C (lines 18-19).

For each candidate object ∈, the upper bound

score  is computed by ←sum

Algorithm 1 ALPS+ (k, r)
Input: k: the number of requested data objects, r: range constraint
Output: a set   of top-k data objects with the highest score

1: ← .root_node ≤ ≤

2: C←∅ // C is the set of candidate data objects
3: ←∅ //   is the current top-k set

4: 
←∅ ≤ ≤

5: ← ≤ ≤ //   is the last component score seen in 

6: while there is   such that  ≠∅ do

7: 〈dtop, (dtop)〉← pop_data_object_with_highest_score

8: ← (dtop)

9: ←sum{ ≤  ≤ }

10: (dtop)←(dtop) (dtop)

11: if  or (dtop)  then

12: ←∪{dtop}
13: if dtop∈ then C←{dtop}
14: if   then

15: ← { }

16: C←∪{ }

17: ←min{∈}

18: else if   and (dtop)≥  then

19: C←∪{dtop} // see line 21 to evaluate (dtop)
20: for each data object ∈ do
21: ←sum{≤ ≤ such that   has not been seen so far} 

22: if    then C←{}

23: ←max{∈}

24: if  ≥ and   then exit while statement

25: return   as the top-k set
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{ ≤ ≤ such that   has not been seen so

far}. Then, the highest ub of all data objects in C

is determined and set to u (lines 20-23). If  ≥

and   , or if all of the heaps are exhausted,

then the algorithm terminates on returning  as

the query result (lines 24-25).

Algorithm 2 returns data objects ∈ in-

dividually in descending order based on the com-

ponent range scores  . Initially,  contains the

root node of an R-tree  that stores ⊗ .

 stores entries e, each of which takes the form

 〈〉. Here, ptr indicates either a data ob-
ject or an R-tree node, and score denotes the score

of either the data object or the highest score of the

R-tree node that the ptr points to. If the ptr in-

dicates an R-tree node (i.e., Nnonleaf or N leaf in lines

3 and 7, respectively), then the score corresponds

to the highest score of feature objects enclosed by

the R-tree node. Every time the entry e at the top

of the max heap  is popped. If entry e refers to

an R-tree node, the qualifying entries in the R-tree

node are added to  . More specifically, if e refers

to a nonleaf node Nnonleaf, each entry ∈ is

examined to verify that w.mindist≤ . If so, an en-

try〈w.ptr, w.maxscore〉is added to  . If e in-

dicates a leaf node N leaf, this denotes that N leaf in-

cludes multiple line segments that correspond to

⊗ pairs. Therefore, each data object ∈

is examined to verify that  ≤  . If so, an en-

try 〈〉 is added to  (lines 10-11). Finally,

when data object dtop is found at the top of  , dtop

is added to 
 to avoid multiple reports on the

same data object, and the top entry <dtop, (dtop)>

is returned.

6. PERFORMANCE STUDY

6.1 Experimental settings

In the experiments, we use a real-life roadmap

[20] (consisting of 175,813 nodes and 179,179

edges) for the main roads of North America corre-

sponding to a data universe of × km2.

According to the American hotel and lodging asso-

ciation [21], there are more than 54,200 hotels in

the United States. These hotels correspond to the

data objects in this study. The experimental pa-

rameter settings are given in Table 4.

The positions of the data and feature objects fol-

low either a uniform or a centroid distribution. The

centroid dataset is generated so that it resembles

Algorithm 2 pop_data_object_with_highest_score ( , r)
Input:  : a max heap, r: range constraint
Output: data object e in   with the highest component score

1: ← //  〈〉 is an entry in 

2: while ∉  or ∈
  do

3: if e points to a nonleaf node Nnonleaf of   then

4: for each entry ∈  do
5: if w.mindist≤  then
6: insert an entry 〈w.ptr, w.maxscore〉 to 

7: else // this means that e points to a leaf node Nleaf of 

8: for each entry ∈Nleaf do
9: for each data object ∈  do
10: if  ≤  then
11: insert an entry 〈〉 to 

12: ←

13: 
←

∪{dtop}

14: return e // note that e =〈dtop,  (dtop)〉
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the real world. First, five centroids are chosen

where the first centroid is positioned in the middle

of the space and the others are positioned randomly.

The objects around each centroid follow a

Gaussian distribution, in which the mean is set to

the centroid and the standard deviation is set to

50 km, which corresponds to 1% of the side length

of the data universe. In each experiment, we vary

a single parameter within the range that is shown

in Table 4 while keeping the other parameters at

the bolded default values. Unless otherwise stated,

the data objects follow a centroid distribution,

whereas the feature objects follow a uniform

distribution.

As a benchmark for ALPS+, we use a baseline

method that computes the score of every data ob-

ject using the range network expansion (RNE) al-

gorithm [22] to compute the range scores, re-

spectively. Recall that the baseline method does not

use any materialization scheme. We implement and

evaluate two versions of ALPS+, referred to as


 and 

 . 
 groups data objects

in a segment into a data segment and then gen-

erates and stores a skyline set for each data

segment. Thus, 
 can include redundant pairs

of data and feature objects. 
 generates and

stores a skyline set for each data object and thus

includes no redundant pairs of data and feature

objects. 
 is optimal in terms of query proc-

essing time because it does not include any re-

dundant pairs of data and feature objects. We com-

pare 
 , 

 , and the baseline method us-

ing two measures: query processing time and ma-

terialization cost. The three methods are im-

plemented in C++ and run on a desktop PC with

a 3.4 GHz processor and 16 GB memory. The data-

sets are indexed using R-trees with node sizes of

4 KB. The scores of feature objects are randomly

generated by   units within the range  . That

is,  {  ×≤ ≤}.

6.2 Experimental results

Fig. 8 shows the query processing times for


 , 

 , and the baseline method for the

range condition. In summary, 
 shows the

best performance, the baseline method shows the

worst performance, and 
 shows com-

parable performance to ALPS+ opt. Fig. 8(a) shows

the query processing time as a function of k, i.e.,

the number of requested data objects with the

highest scores. As shown in this figure, 


outperforms 
 slightly because unlike 

 ,


 includes redundant pairs of data and fea-

ture objects, which lead to unnecessary search time

and storage. Fig. 8(b) shows the query processing

time as a function of query radius r between 1 km

and 5 km. 
 still shows comparable per-

formance to 
 . Fig. 8(c) shows the query

processing time as a function of the number m of

feature datasets. The query processing times for

all methods increase with the m value. 


shows a similar performance to 
 because


 includes a small number of redundant

Table 4. Experimental parameter settings

Parameter Range

Ratio of directed edge sequences to total edge sequences (Rdir)
Number of data objects (|D|)
Number of feature objects in F i (|F i|)
Number of feature datasets (m)
Distribution of data objects

Distribution of feature objects

Query range (r)
Number of data objects to be retrieved (k)

10%

50,000

50,000

1, 2, 3, 4, 5

(U)niform, (C)entroid

(U)niform, (C)entroid

1, 2, 3, 4, 5 (km)

10, 20, 30, 40, 50
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pairs, which are later presented in Fig. 9(a). Fig.

8(d) shows the query processing time for various

distributions of data and feature objects. In this

figure, each pair (i.e., 〈〉〈〉〈〉 and
〈〉) indicates a combination of the distributions
of data and feature objects where the first and sec-

ond attributes refer to the distributions of data and

feature objects, respectively. 
 and 



are not sensitive to the distributions of data and

feature objects. However, the baseline method is

very sensitive to the distributions. In particular, the

query processing time of the baseline method is up

to 70 times longer than that of 
 for the case

of 〈〉.
Given that the baseline method does not use any

materialization scheme, we investigate the materi-

alization costs of 
 and 

 . Fig. 9

shows the comparisons of index size and con-

struction time for 
 and 

 . As shown

in Fig. 9(a), the index sizes of 
 are smaller

than those of 
 . This is expected because


 has no redundant pairs of data and feature

objects, whereas 
 has redundant pairs of

data and feature objects. The index sizes of


 are sensitive to the distribution of feature

objects. Specifically, the index sizes of 
 are

up to 14 times larger than those of 
 when

feature objects follow a centroid distribution. As

shown in Fig. 9(b), the index construction times

(a) (b)

(c) (d)

Fig. 8. Comparison of query processing time. (a) Effect of k, (b) Effect of r, (c) Effect of m, and (d) Effect of distributions 
of objects.

(a) (b)

Fig. 9. Index size and construction time. (a) Index size and (b) Construction time.
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of 
 are typically longer than those of


 by up to 89 times except for the case

〈〉. A trade-off exists between 
 and


 with regard to index size and construction

time. Typically, the index size of 
 is smaller

than that of 
 , whereas the index con-

struction time of 
 is longer than that of


 .

7. CONCLUSIONS

In this study, we proposed a new method called

ALPS+ for efficient processing of spatial preference

queries in spatial network databases. In this meth-

od, data objects in a directed segment are grouped

and then converted into a data segment. Pairs of

data segments and feature objects are mapped to

the distance-score space, and a skyline set is gen-

erated for each data segment. We implemented and

evaluated the two versions of ALPS+, which are

referred to as 
 and 

 , to confirm the

superiority and effectiveness of ALPS+ in a wide

range of problem settings. A trade-off exists be-

tween 
 and 

 in terms of query proc-

essing time and index construction time. 


outperforms 
 in query processing time,

whereas 
 outperforms 

 in index

construction time.
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