• Title/Summary/Keyword: Spatial navigation

Search Result 376, Processing Time 0.026 seconds

A biologically inspired model based on a multi-scale spatial representation for goal-directed navigation

  • Li, Weilong;Wu, Dewei;Du, Jia;Zhou, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1477-1491
    • /
    • 2017
  • Inspired by the multi-scale nature of hippocampal place cells, a biologically inspired model based on a multi-scale spatial representation for goal-directed navigation is proposed in order to achieve robotic spatial cognition and autonomous navigation. First, a map of the place cells is constructed in different scales, which is used for encoding the spatial environment. Then, the firing rate of the place cells in each layer is calculated by the Gaussian function as the input of the Q-learning process. The robot decides on its next direction for movement through several candidate actions according to the rules of action selection. After several training trials, the robot can accumulate experiential knowledge and thus learn an appropriate navigation policy to find its goal. The results in simulation show that, in contrast to the other two methods(G-Q, S-Q), the multi-scale model presented in this paper is not only in line with the multi-scale nature of place cells, but also has a faster learning potential to find the optimized path to the goal. Additionally, this method also has a good ability to complete the goal-directed navigation task in large space and in the environments with obstacles.

METAPHORIC NAVIGATION AIDS FOR CYBER SHOPPING MALLS: AN EMPIRICAL STUDY TOWARD THE CONSTRUCTION OF CUSTOMER INTERFACE

  • Kim, Jin-Woo
    • Management Science and Financial Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-27
    • /
    • 1997
  • Designing effective navigation aids for customer interfaces is critical for the success of cyber shopping malls. Navigation aids can be classified into either basic ones which are based on the structure of the malls or add-ons which are not. Add-on navigation aids provide various short-cuts to promote efficient traversal in the cyber shopping malls, but too many of them would increase the complexity of the customer interface. Metaphors have been used widely for the design of add-on navigation aids, but little research evaluates their impact on the processes and outcomes of customers behavior in cyber shopping malls. This paper presents an empirical study that investigates the navigation process of customers and the subjective evaluation of their shopping experience. This research implemented two versions of a test-bed cyber shopping mall according to different metaphors used; one based on a spatial metaphor, and the other based on a non spatial metaphor. The results of the experiment indicate that navigation aids based on the spatial metaphor were used more frequently, which resulted in better understanding about the entire structure of the cyber shopping malls, which in turn led to an increased ease of finding target items and also a more pleasant shopping experience. The benefits of navigation aids based on the spatial metaphor became more evident when customers were looking for ad-hoc category items rather than common items. This paper presents plausible explanations for the results and implications to the design of navigation aids for cyber shopping malls.

  • PDF

Time Synchronization Error and Calibration in Integrated GPS/INS Systems

  • Ding, Weidong;Wang, Jinling;Li, Yong;Mumford, Peter;Rizos, Chris
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • The necessity for the precise time synchronization of measurement data from multiple sensors is widely recognized in the field of global positioning system/inertial navigation system (GPS/INS) integration. Having precise time synchronization is critical for achieving high data fusion performance. The limitations and advantages of various time synchronization scenarios and existing solutions are investigated in this paper. A criterion for evaluating synchronization accuracy requirements is derived on the basis of a comparison of the Kalman filter innovation series and the platform dynamics. An innovative time synchronization solution using a counter and two latching registers is proposed. The proposed solution has been implemented with off-the-shelf components and tested. The resolution and accuracy analysis shows that the proposed solution can achieve a time synchronization accuracy of 0.1 ms if INS can provide a hard-wired timing signal. A synchronization accuracy of 2 ms was achieved when the test system was used to synchronize a low-grade micro-electromechanical inertial measurement unit (IMU), which has only an RS-232 data output interface.

  • PDF

Video Segmentation and Video Segment Structure for Virtual Navigation

  • Choi, Ji-Hoon;Kim, Seong-Baek;Lee, Seung-Yong;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.783-785
    • /
    • 2003
  • In recent years, the use of video in GIS is considered to be an important subject and many related studies result in VideoGIS. The virtual navigation is an important function that can be applied to various VideoGIS applications. For virtual navigation by video, the following problems must be solved. 1) Because the video route may be not exactly coincided with route that user wants to navigate, parts of several video clips may be required for single navigation. Virtual navigation should allow the user to move from one video to another at the proper position. We suggest the video segmentation method based on geographic data combined with video. 2) From a point to a destination, the change frequency of video must be minimized. The frequent change of video make user to mislead navigation route and cause the wasteful use of computing resource. We suggest methods that structure video segments and calculate weight value of each node and link.

  • PDF

FT-Indoornavi: A Flexible Navigation Method Based on Topology Analysis and Room Internal Path Networks for Indoor Navigation (FT-IndoorNavi: 토폴로지 분석 및 실내 경로 네트워크 분석에 기반한 실내 네비게이션을 위한 유연한 네비게이션 알고리즘)

  • Zhou, Jian;Li, Yan;Lee, Soon Jo;Bae, Hae Young
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Recently many researches have focused on indoor navigation system. An optimal indoor navigation method can help people to find a path in large and complex buildings easily. However, some indoor navigation algorithms only calculate approximate routes based on spatial topology analysis, while others only use indoor road networks. However, both of them use only one of the spatial topology or network information. In this paper, we present a navigation method based on topology analysis and room internal networks for indoor navigation path. FT-Indoornavi (Flexible Topology Analysis Indoornavi) calculate internal routes based on spatial topology and internal path networks to support length-dependent and running-time optimal routing, which adapt to complex indoor environment and can achieve a better performance in comparison of Elastic algorithm and iNav.

An empirical study of the effectiveness of spatial navigation system - Focus on large-scale web sites - (공간 지식을 적용한 항해 시스템에 관한 연구 - 대규모 웹 사이트를 중심으로 -)

  • Suh, Jin-Won;Kim, Jin-Woo
    • Asia pacific journal of information systems
    • /
    • v.11 no.2
    • /
    • pp.79-98
    • /
    • 2001
  • As the average size of web sites gets larger, users tend to experience more severe problems while navigating through the sites. In order to alleviate the navigation-related problems, this paper proposes two new navigation systems based on the spatial metaphor to the navigation in the real world. Prototypes of the two system, Complete Route Navigation(CRN) and Complete Survey Navigation(CSN), were developed and applied to four versions of test bed web sites, which were then used in an experiment to test the effectiveness of the two navigation systems. Results from the experiment indicate that the two systems are indeed effective in aiding users to navigate in a large scale web site, and have more positive impacts when provided together. This paper ends with the limits of the study results and their implications to the development of large-scale web sites.

  • PDF

Research of Vehicle Navigation Based Video-GIS

  • Feng, Jiang-Fan;Zhu, Guan-Yu;Liu, Zhao-Hong;Li, Yan
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2009
  • In order to make the effect of the navigation system more direct, the paper proposes a thought of vehicle navigation system based on Video-GIS. A semantic framework has been defined whose core is focused on the integration and interaction of video and spatial information, which supports full content retrieval based on multimodal metadata extraction and fusion, and supports kinds of wireless access mode. Furthermore, requirements of prototype system are discussed. Then the design and implementation of framework are discussed. Next, describe the key ideas and technologies involved. Finally, we point out its future research trend.

  • PDF

2D Map-Based Navigation in 3D Virtual Environment (2차원 Map 기반 3차원 가상공간 Navigation)

  • Gwon, Tae-Uk;Choe, Yun-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.4
    • /
    • pp.327-337
    • /
    • 2001
  • 이 논문에서 제시된 2D Map-Based Navigation (MBN)은 다중 사용자 환경의 가상공간을 이동할 때, 실세계와 유사한 이동방법을 제공하여 사용자로 하여금 가상공간에 대한 현장감 및 현실감의 제고에 초점을 두었다. MBN은 사용자들이 가상공간에서 발생하기 쉬운 spatial loss를 방지하고, 이동 시 부가적인 입력이 없이도 일정한 속도로 이동을 지원하는 Automatic Constant-velocity Navigation, 이동중 장애물 및 다른 사용자(아바타)와의 충돌현상을 감지 및 회피하는 Collision Detection and Avoidance, 그리고 충돌회피 후 기존 방향으로의 계속된 이동을 지원하는 Path Adjustment 등의 기능을 제공한다. MBN은 spatial loss의 방지, 사용자의 부가적인 노력의 감소 및 병행작업의 보장, 현실과 유사한 사용자 중심의 navigation 기법의 제공, 그리고 가상공간과 현실과의 괴리를 줄임으로써 가상현실이 추구하는 현실감 및 현장감을 높일 수 있도록 하였다. 실험을 통하여 본 연구에서 제안한 MBN이 사용자 중심의 매우 자연스럽소, 쉽고 편리한 가상공간 navigation 인터페이사라는 평가를 얻었다.

  • PDF

MULTI-SENSOR DATA FUSION FOR FUTURE TELEMATICS APPLICATION

  • Kim, Seong-Baek;Lee, Seung-Yong;Choi, Ji-Hoon;Choi, Kyung-Ho;Jang, Byung-Tae
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.359-364
    • /
    • 2003
  • In this paper, we present multi-sensor data fusion for telematics application. Successful telematics can be realized through the integration of navigation and spatial information. The well-determined acquisition of vehicle's position plays a vital role in application service. The development of GPS is used to provide the navigation data, but the performance is limited in areas where poor satellite visibility environment exists. Hence, multi-sensor fusion including IMU (Inertial Measurement Unit), GPS(Global Positioning System), and DMI (Distance Measurement Indicator) is required to provide the vehicle's position to service provider and driver behind the wheel. The multi-sensor fusion is implemented via algorithm based on Kalman filtering technique. Navigation accuracy can be enhanced using this filtering approach. For the verification of fusion approach, land vehicle test was performed and the results were discussed. Results showed that the horizontal position errors were suppressed around 1 meter level accuracy under simulated non-GPS availability environment. Under normal GPS environment, the horizontal position errors were under 40㎝ in curve trajectory and 27㎝ in linear trajectory, which are definitely depending on vehicular dynamics.

Development of a Simulation Tool to Evaluate GNSS Positioning Performance in Urban Area

  • Wu, Falin;Liu, Gang-Jun;Zhang, Kefei;Densley, Liam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.71-76
    • /
    • 2006
  • With the rapid development of spatial infrastructure in US, Europe, Japan, China and India, there is no doubt that the next generation Global Navigation Satellite System (GNSS) will improve the integrity, accuracy, reliability and availability of the position solution. GNSS is becoming an essential element of personal, commercial and public infrastructure and consequently part of our daily lives. However, the applicability of GPS in supporting a range of location-sensitive applications such as location based services in an urban environment is severely curtailed by the interference of the 3D urban settings. To characterize and gain in-depth understanding of such interferences and to be able to provide location-based optimization alternatives, a high-fidelity 3D urban model of Melbourne CBD built with ArcGIS and large scale high-resolution spatial data sets is used in this study to support a comprehensive simulation of current and future GNSS signal performance, in terms of signal continuity, availability, strength, geometry, positioning accuracy and reliability based on a number of scenarios. The design, structure and major components of the simulator are outlined. Useful time-stamped spatial patterns of the signal performance over the experimental urban area have been revealed which are valuable for supporting location based services applications, such as emergency responses, the optimization of wireless communication infrastructures and vehicle navigation services.

  • PDF