• Title/Summary/Keyword: Spatial monitoring

Search Result 1,203, Processing Time 0.02 seconds

A Study on the Development of "Bufo gargarizans" Habitat Suitability Index(HSI) (두꺼비 서식지 적합성 지수(HSI) 모델개발을 위한 연구)

  • Cho, Gun-Young;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.23-38
    • /
    • 2022
  • This study investigates the characteristics and physical habitat requirements for each Bufo gargarizans life history through a literature survey. After deriving variables for each component of Bufo gargarizans, in order to reduce regional deviations from eight previously studied literature research areas for deriving the criteria for variables, a total of 12 natural habitats of Bufo gargarizanss are selected as spatial ranges by selecting four additional sites such as Umyeonsan Ecological Park in Seoul, Wonheungibangjuk in Cheongju in the central region, Changnyeong Isan Reservoir in the southern region, and Mangwonji in Daegu. This study presents Bufo gargarizans SI, a species endemic to Korea, whose population is rapidly declining due to large-scale housing site development and road development, and develops a Bufo gargarizans HSI model accordingly to improve the function of the damaged Bufo gargarizans habitat and to present an objective basis for site selection of alternative habitat. At the same time, it provides basic data for adaptive management and follow-up monitoring. The three basic habitat requirements of amphibians, the physical habitat requirements of Bufo gargarizans, synthesized with shelter, food, and water, and the characteristics of each life history, are classified into five components by adding space and threats through literature research and expert advice. Variables are proposed by synthesizing and comparing the general characteristics of amphibians, among the previously studied single species of amphibians, the components of HSI of goldfrogs and Bufo gargarizans, and the ecological and physical environmental characteristics of Bufo gargarizans. Afterwards, through consultation with an amphibian expert, a total of 10 variables are finally presented by adjacent forest area(ha), the distance between spawning area and the nearest forest land(m), the soil, the distance from the wetland(m), the forest layered structure, the low grassland space, the permanent wetland area(ha), shoreline slope(%), PH, presence of predators, distance from road(m), presence or absence of obstacles. n order to derive the final criteria for each of the 10 variables, the criteria(alternative) for each variable are presented through geographic information analysis of the site survey area and field surveys of the previously studied literature research area. After a focus group interview(FGI) of 30 people related to the Bufo gargarizans colony in Cheongju, a questionnaire and in-depth interviews with three amphibians experts are conducted to verify and supplement the criteria for each final variable. Based on the finally developed Bufo gargarizans HSI, the Bufo gargarizans habitat model is presented through the SI graph model and the drawing centering on the Bufo gargarizans spawning area

Review of Remote Sensing Technology for Forest Canopy Height Estimation and Suggestions for the Advancement of Korea's Nationwide Canopy Height Map (원격탐사기반 임분고 추정 모델 개발 국내외 현황 고찰 및 제언)

  • Lee, Boknam;Jung, Geonhwi;Ryu, Jiyeon;Kwon, Gyeongwon;Yim, Jong Su;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.435-449
    • /
    • 2022
  • Forest canopy height is an indispensable vertical structure parameter that can be used for understanding forest biomass and carbon storage as well as for managing a sustainable forest ecosystem. Plot-based field surveys, such as the national forest inventory, have been conducted to provide estimates of the forest canopy height. However, the comprehensive nationwide field monitoring of forest canopy height has been limited by its cost, lack of spatial coverage, and the inaccessibility of some forested areas. These issues can be addressed by remote sensing technology, which has gained popularity as a means to obtain detailed 2- and 3-dimensional measurements of the structure of the canopy at multiple scales. Here, we reviewed both international and domestic studies that have used remote sensing technology approaches to estimate the forest canopy height. We categorized and examined previous approaches as: 1) LiDAR approach, 2) Stereo or SAR image-based point clouds approach, and 3) combination approach of remote sensing data. We also reviewed upscaling approaches of utilizing remote sensing data to generate a continuous map of canopy height across large areas. Finally, we provided suggestions for further advancement of the Korean forest canopy height estimation system through the use of various remote sensing technologies.

Estimation of Displacements Using Artificial Intelligence Considering Spatial Correlation of Structural Shape (구조형상 공간상관을 고려한 인공지능 기반 변위 추정)

  • Seung-Hun Shin;Ji-Young Kim;Jong-Yeol Woo;Dae-Gun Kim;Tae-Seok Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • An artificial intelligence (AI) method based on image deep learning is proposed to predict the entire displacement shape of a structure using the feature of partial displacements. The performance of the method was investigated through a structural test of a steel frame. An image-to-image regression (I2IR) training method was developed based on the U-Net layer for image recognition. In the I2IR method, the U-Net is modified to generate images of entire displacement shapes when images of partial displacement shapes of structures are input to the AI network. Furthermore, the training of displacements combined with the location feature was developed so that nodal displacement values with corresponding nodal coordinates could be used in AI training. The proposed training methods can consider correlations between nodal displacements in 3D space, and the accuracy of displacement predictions is improved compared with artificial neural network training methods. Displacements of the steel frame were predicted during the structural tests using the proposed methods and compared with 3D scanning data of displacement shapes. The results show that the proposed AI prediction properly follows the measured displacements using 3D scanning.

Development of Integrated Management System Based on GIS on Soft Ground (GIS 기법을 이용한 연약 지반 시공 관리 시스템의 개발)

  • Chun, Sung-Ho;Woo, Sang-Inn;Chung, Choong-Ki;Choi, In-Gul
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.37-46
    • /
    • 2007
  • In the practice of preloading method for soft ground improvement, field engineers need information of ground properties, construction works and field monitoring on ground behaviors of the site. So, integrating all these informations into one database can provide more efficient way for managing and utilizing the data for construction management. In this study, integrated system for construction management of ground improvement sites under preloading is developed. The developed system consists of database (DB) and application program. The database contains all collected data in a construction site and processed data in the system with their geographic information. All informations in the database are standardized from the result of data characterization. Application program performs various functions on managing and utilizing information in the database; pre- and post- data processing with graphic visualization of output, spatial data interpolation, and prediction of ground behavior using field measuring data. And by providing integrating informations and predictions over entire project area with comprehensible visual displays, the applicability and effectiveness of the developed system for construction management were confirmed.

Enhancement of Geomorphology Generation for the Front Land of Levee Using Aerial Photograph (항공영상을 연계한 하천 제외지의 지형분석 개선 기법)

  • Lee, Geun Sang;Lee, Hyun Seok;Hwang, Eui Ho;Koh, Deuk Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.407-415
    • /
    • 2008
  • This study presents the methodology to link with aerial photos for advancing the accuracy of topographic survey data that is used to calculate water volume in urban stream. First, GIS spatial interpolation technique as Inverse Distance Weight (IDW) and Kriging was applied to construct the terrain morphology to the sand-bar and grass area using cross-sectional survey data, and also validation point data was used to estimate the accuracy of created topographic data. As the result of comparison, IDW ($d^{-2}_{ij}$, 2nd square number) in Sand-bar area and Kriging Spherical model in grass area showed more efficient results in the construction of topographic data of river boundary. But the differences among interpolation methods are very slight. Image classification method, Minimum Distance Method (MDM) was applied to extract sand-bar and grass area that are located to river boundary efficiently and the elevation value of extracted layers was allocated to the water level point value. Water volume with topographic data from aerial photos shows the advanced accuracy of 13% (in sand-bar) and 12% (in grass) compared to the water volume of original terrain data. Therefore, terrain analysis method in river linking with aerial photos is efficient to the monitoring about sand-bar and grass area that are located in the downstream of Dam in flooding season, and also it can be applied to calculate water volume efficiently.

Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages (딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지)

  • Byunghyun Yoon;Seonkyeong Seong;Jaewan Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • The remotely sensed data, such as satellite imagery and aerial photos, can be used to extract and detect some objects in the image through image interpretation and processing techniques. Significantly, the possibility for utilizing digital map updating and land monitoring has been increased through automatic object detection since spatial resolution of remotely sensed data has improved and technologies about deep learning have been developed. In this paper, we tried to extract plastic greenhouses into aerial orthophotos by using fully convolutional densely connected convolutional network (FC-DenseNet), one of the representative deep learning models for semantic segmentation. Then, a quantitative analysis of extraction results had performed. Using the farm map of the Ministry of Agriculture, Food and Rural Affairsin Korea, training data was generated by labeling plastic greenhouses into Damyang and Miryang areas. And then, FC-DenseNet was trained through a training dataset. To apply the deep learning model in the remotely sensed imagery, instance norm, which can maintain the spectral characteristics of bands, was used as normalization. In addition, optimal weights for each band were determined by adding attention modules in the deep learning model. In the experiments, it was found that a deep learning model can extract plastic greenhouses. These results can be applied to digital map updating of Farm-map and landcover maps.

Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 7 Major Dam Watersheds in South Korea (NOAA AVHRR 영상 및 GIS 기법을 이용한 국내 주요 7개 댐 유역의 융설 매개변수 추출)

  • Shin, Hyung Jin;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.177-185
    • /
    • 2008
  • Accurate monitoring of snow cover is a key component for studying climate and global as well as for daily weather forecasting and snowmelt runoff modelling. The few observed data related to snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. Remote sensing technology is very effective to observe a wide area. Although many researchers have used remote sensing for snow observation, there were a few discussions on the characteristics of spatial and temporal variation. Snow cover maps were derived from NOAA AVHRR images for the winter seasons from 1997 to 2006. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation stations. Model parameters (Snow Cover Area: SCA, snow depth, Snow cover Depletion Curve: SDC) were built for 7 major watersheds in South Korea. The decrease pattern of SCA for time (day) was expressed as exponentially decay function, and the determination coefficient was ranged from 0.46 to 0.88. The SCA decreased 70% to 100% from the maximum SCA when 10 days passed.

Utilization of Weather, Satellite and Drone Data to Detect Rice Blast Disease and Track its Propagation (벼 도열병 발생 탐지 및 확산 모니터링을 위한 기상자료, 위성영상, 드론영상의 공동 활용)

  • Jae-Hyun Ryu;Hoyong Ahn;Kyung-Do Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.245-257
    • /
    • 2023
  • The representative crop in the Republic of Korea, rice, is cultivated over extensive areas every year, which resulting in reduced resistance to pests and diseases. One of the major rice diseases, rice blast disease, can lead to a significant decrease in yields when it occurs on a large scale, necessitating early detection and effective control of rice blast disease. Drone-based crop monitoring techniques are valuable for detecting abnormal growth, but frequent image capture for potential rice blast disease occurrences can consume significant labor and resources. The purpose of this study is to early detect rice blast disease using remote sensing data, such as drone and satellite images, along with weather data. Satellite images was helpful in identifying rice cultivation fields. Effective detection of paddy fields was achieved by utilizing vegetation and water indices. Subsequently, air temperature, relative humidity, and number of rainy days were used to calculate the risk of rice blast disease occurrence. An increase in the risk of disease occurrence implies a higher likelihood of disease development, and drone measurements perform at this time. Spectral reflectance changes in the red and near-infrared wavelength regions were observed at the locations where rice blast disease occurred. Clusters with low vegetation index values were observed at locations where rice blast disease occurred, and the time series data for drone images allowed for tracking the spread of the disease from these points. Finally, drone images captured before harvesting was used to generate spatial information on the incidence of rice blast disease in each field.

Characteristic Analysis of Forest Area Changes in Major Regions of North Korea (북한 주요 지역의 산림면적 변화 특성 분석)

  • Seong-Ho Yoon;Eun-Hee Kim;Jin-Woo Park
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.459-471
    • /
    • 2023
  • This study identified the characteristics of changes in forest areas of North Korea's major regions (Gaesong, Goseong, Pyongyang, and Hyesan·Samsu) using data on degraded lands collected via monitoring by the National Institute of Forest Science. The data, spanning 1999 to 2018, were cross-analyzed to determine trends in land cover change, and hotspot analysis was conducted to confirm evident changes in the forest areas. The results showed that the areas of interest substantially transitioned to other land use types from 1999 to 2008. Contrastingly, the range of changes decreased from 2008 to 2018, with some areas regenerating into forests. Nevertheless, the hotspot analysis indicated that hotspots occurred more intensively in the outskirts of cities and forest edges from 2008 to 2018 than from 1999 to 2008. The analysis also showed that the aforementioned changes were caused by various aspects, depending on regional characteristics and social factors. This study can be used as a basic reference for decision-making on the selection of basic forest restoration targets and restoration methods in inter-Korean forest cooperation initiatives.

Mapping Topography Change via Multi-Temporal Sentinel-1 Pixel-Frequency Approach on Incheon River Estuary Wetland, Gochang, Korea (다중시기 Sentinel-1 픽셀-빈도 기법을 통한 고창 인천강 하구 습지의 지형 변화 매핑)

  • Won-Kyung Baek;Moung-Jin Lee;Ha-Eun Yu;Jeong-Cheol Kim;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1747-1761
    • /
    • 2023
  • Wetlands, defined as lands periodically inundated or exposed during the year, are crucial for sustaining biodiversity and filtering environmental pollutants. The importance of mapping and monitoring their topographical changes is therefore paramount. This study focuses on the topographical variations at the Incheon River estuary wetland post-restoration, noting a lack of adequate prior measurements. Using a multi-temporal Sentinel-1 dataset from October 2014 to March 2023, we mapped long-term variations in water bodies and detected topographical change anomalies using a pixel-frequency approach. Our analysis, based on 196 Sentinel-1 acquisitions from an ascending orbit, revealed significant topography changes. Since 2020, employing the pixel-frequency technique, we observed area increases of +0.0195, 0.0016, 0.0075, and 0.0163 km2 in water level sections at depths of 2-3 m, 1-2 m, 0-1 m, and less than 0 m, respectively. These findings underscore the effectiveness of the wetland restoration efforts in the area.